

STIMA 10 - NAZIONALE

Programma per l'applicazione delle UNITS 11300

by Maurizio Rimoldi

STIMA10-TFM 7.5 Giugno 2009

Questo aggiornamento applica le UNITS 11300 1 e 2 per una valutazione standard e di progetto

Documento revisionato il: 14/10/2009

Sommario

	Premessa	7
Parte I	Guida DPR 59/09 - Attuazione del Dlgs 192/05	9
		40
1	Fabbisogno limite estivo dell'involucro	. 10
2	Limitazione massa superficiale e trasmittanza termica periodica	.11
Parte II	Linee guida nazionali (10-07-09)	14
1	Limitazione fabbisogno climatizzazione estiva	. 14
	Metodo basato sull'EPe involucro	14
	Metodo basato su attenuazione esfasamento	15
2	Compilazione e stampa degli attestati	16
-		
		17
Parte III	Guida alla UNITS 11300	20
1	Individuazione del sistema edificio-impianto	. 20
	edificio composto da 6 unità immobiliari con medesima destinazione d'uso e impianto termico centralizz	ato
	edificio composto da 1 unità immobiliare e impianto termico autonomo	21
	edificio composto da 6 unità immobiliari con medesima destinazione d'uso e impianti termici autonomi	22
	edificio composto da 6 unità immobiliari con impianto termico centralizzato e due differenti destinazione	d'uso
	Suddivisione in zone termiche	22
	Zone non climatizzate	23
2	Fabbisogno energetico dell'involucro per la climatizzazione invernale ed estiva	.23
	Pariada di funzionamento	22
	Periodo di funzionamento	23
		24 24
	Valori medi mensili della temperatura media giornaliera dell'aria esterna	24
	Coefficiente di dispersione termica per trasmissione	24
	Sigle da usare per identificare i diversi tipi di dispersione	25
	Trasmittanza termica corretta	25
	Trasmittanza termica cassonetti	27
	Scambio verso zone non climatizzate	27
	Calcolo del fattore di correzione btr,x	27
	Uso di valori predefiniti btr,x	28
	Scambio termico verso il terreno	30
	Opzioni Calcolo Terreno	31
	Pavimento a livello del terreno	32
	Pavimento su vespaio aerato	33
	Pavimento interrato	35
	Scambio verso edifici adiacenti (TF)	36
	Impostazioni ambienti vicinori	36
	Trasmittanza termica finestre	37
		38
	I rasmittanza vetrate Ug	40
	i rasmittanza telal Ut	41 40
	Liviting 1.2 x 1.5 (Area taleia 20%)	4Z
	Ow lipico 1.2 x 1.5 (Alea leialo 20%)	43 12
	Annorti di calore dovuti ad annarecchiature elettriche e persone	43 16
	Apporti di calore dovuto alla radiazione solare	40 47
	Irradiazione diotale giornaliera media mensile	47
	3	

	Fattori schermatura	
	Gestione schermi	
	Nuovo schermo	50
	Archivio schermi	50
	Calcola	50
	Dettagli	
	Apporti solari dovuti alle superfici finestrate	53
	Trasmittanza solare	53
	Fattori riduzione tendaggi	
	Gestione schermature mobili	
	Apporti solari dovuti alle pareti opache esterne	
	UNI 6946 - A	
	Apporti solari dovuti a spazi soleggiati	
	Capacità termica	
	Calcolo UNI 13786	
	Stima UNITS 11300-1	
	Risultati relativi al fabbisogno energetico	60
	Grafico fabbisogno invernale	61
	Grafico fabbisogno estivo	61
3	Eabhisogno di Energia Primaria ner la climatizzazione invernale	61
3		
	Sottosistemi energetici	63
	Calcolo temperatura media dell'acqua nel generatore	
	Recuperatore di calore	
	Sottosistema di emissione-regolazione	
	Sottosistema di emissione	
	Sottosistema di regolazione	
	Sottosistema di distribuzione	
	Calcolo mediante appendice A	
	Sottosistema di accumulo	
	Sottosistema di generazione	
	Rendimenti di generazione precalcolati	
	Calcolo mediante appendice B	
	Metodo di calcolo delle perdite di generazione basato sulla Direttiva 92/42/CEE	
	Metodo di calcolo analitico delle perdite di generazione	
	Pompa di calore	
	Teleriscaldamento	
	Generatore a combustione di biomassa	
	Vettore energetico	
	Archivio Potere Calorifico	
	Fonte rinnovabile	
	Risultati relativi al fabbisogno di EPci	
	Dettaglio calcolo fabbisogno energia primaria.	
4	Fabbisogno termico per la produzione di acqua calda sanitaria	84
-		
	Fabbisogno ACS	
	Sottosistema erogazione	
	Sottosistema distribuzione ACS	
	Calcolo semplificato perdite distribuzione ACS	
	Sottosistema accumulo ACS	
	Sottosistema generazione ACS	
	Contributo solare termico	
	Risultati relativi al fabbisogno ACS	
5	Contributo fotovoltaico	
Parte IV	Compilazione relazione tecnica	99
1	Editor rtf della relazione tecnica ministeriale	
	Funzionalità principali	

	Terminologia usata	
	Descrizione dell'editor della relazione tecnica	
	Archivio frasi	
	Come impostare un modello	
	Archivio archetipi	107
	Come creare un nuovo archetipo	108
	Come usare un archetipo	109
Parte V	Certificazione energetica	
	preliminare/regionale	112
1	Dati immobile	113
2	Interventi migliorativi	
3	Approvigionamento combustibile	115
4	Appunti certificatore	116
5	Esportazione XML	116
	Dati finestra XML	117
Parte VI	Attribuzione dei ponti termici ai componenti	
	opachi	119
1	Visualizzazione - editing delle tabelle Um	119
	Riepilogo Verfiche di legge Dlg192/311	120
2	Stampa tabelle Um	
Parte VII	Guida D.Lgs n°311 - 29 Dicembre 2006	123
Parte VII	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge	123
Parte VII	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge Categoria edificio	123 123 123
Parte VII	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge Categoria edificio Epoca limiti di legge	123 123 123 123 123
Parte VII 1 2	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge Categoria edificio Epoca limiti di legge Valori limite trasmittanze	123 123 123 123 124
Parte VII 1 2 3	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge Categoria edificio Epoca limiti di legge Valori limite trasmittanze Verifica rendimenti	123 123 123 123 124 124
Parte VII 1 2 3 4	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge Categoria edificio Epoca limiti di legge Valori limite trasmittanze Verifica rendimenti Verifica limitazione fabbisogno energetico per la climatizzazione estiva	123
Parte VII 1 2 3 4 5	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge	123 123 123 123 124 124 125 125
Parte VII 1 2 3 4 5	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge	123
Parte VII 1 2 3 4 5	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge Categoria edificio Epoca limiti di legge Valori limite trasmittanze Valori limite trasmittanze Verifica rendimenti Verifica limitazione fabbisogno energetico per la climatizzazione estiva Relazione tecnica Ambito intervento - Modelli I.I e I.6 Ambito intervento - Modelli I.2, I3, I4, I5	123
Parte VII 1 2 3 4 5 6	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge Categoria edificio Epoca limiti di legge Valori limite trasmittanze Valori limite trasmittanze Verifica rendimenti Verifica limitazione fabbisogno energetico per la climatizzazione estiva Relazione tecnica Ambito intervento - Modelli I.1 e I.6 Ambito intervento - Modelli I.2, I3, I4, I5 Attestato di qualificazione energetica.	123
Parte VII 1 2 3 4 5 6 7	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge Categoria edificio Epoca limiti di legge Valori limite trasmittanze Valori limite trasmittanze Verifica rendimenti Verifica limitazione fabbisogno energetico per la climatizzazione estiva Relazione tecnica Ambito intervento - Modelli I.I e I.6 Ambito intervento - Modelli I.2, 13, 14, 15 Attestato di qualificazione energetica Apertura lavoro effettuato con una versione precedente.	123
Parte VII 1 2 3 4 5 6 7 8	Guida D.Lgs n°311 - 29 Dicembre 2006	123
Parte VII 1 2 3 4 5 6 7 8	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge	123
Parte VII 1 2 3 4 5 6 7 8	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge	123
Parte VII 1 2 3 4 5 6 7 8	Guida D.Lgs n°311 - 29 Dicembre 2006	123
Parte VII 1 2 3 4 5 6 7 8	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge	123
Parte VII 1 2 3 4 5 6 7 8	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge	123
Parte VII 1 2 3 4 5 6 7 8	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge	123
Parte VII 1 2 3 4 5 6 7 8	Guida D.Lgs n°311 - 29 Dicembre 2006 I nuovi limiti di legge	123

Indice

Premessa

L'installazione dell'aggiornamento non modifica gli archivi esistenti (materiali, strutture e parametri climatici).

I singoli progetti esistenti possono essere aperti con la nuova versione. Non vengono effettuate riparametrizzazioni delle impostazioni nei nuovi dialoghi. Si raccomanda di seguire le indicazioni nel manuale e le UNITS 11300 per impostare i nuovi dati, sopratutto quelli dei sottosistemi energetici, che vengono impostati con valori di default.

I precedenti dialoghi relativi alle impostazioni dei parametri necessari al calcolo del fabbisogno energia con il metodo UNI832-UNI10348 sono stati sostituiti con analoghi dialoghi relativi alle UNITS 11300.

La videata del fabbisogno di energia primaria riscaldamento e ACS è stata completamente ristrutturata. Sono disponibili 2 schemi a blocchi che riassumono i principali parametri di calcolo e permettono di accedere ai vari dialoghi.

Per poter operare con la nuova videata del fabbisogno energetico è necessario aver impostato una risoluzione dello schermo minima di 1024x768

Nella descrizione della nuova procedura UNITS 11300, verranno assunte come note, le nozioni di base sull'utilizzo del programma (gestione degli archivi di base; inserimento dei dati dell'involucro edilizio opaco e trasparente, funzionalità principali).

Le parti I e II descrivono le funzionalità del programma atte a recepire il DPR 59 e le linee guida nazionali del 26 giugno 2009.

La parte III illustra passo passo la UNIS 11300 (simile in molti punti alla 15833 della Regione Lombardia).

Questa versione BASE del programma è adatta per valutazioni STANDARD e di PROGETTO

Le valutazioni adattate all'utenza e quelle in condizioni effettive di utilizzo (da usare ad esempio ai fini di una diagnosi energetica) saranno oggetto della versione EXTRA del programma.

La parte IV descrive come gestire la relazione tecnica mediante l'editor interno. Si tenga presente che la relazione di gruppo è disponibile solo nella versione EXTRA del programma

La parte V illustra come ottenere il certificato energetico regionale, con assegnazione della classe di efficienza energetica fornita dalle Bozze Linee Guida Ministeriali Marzo 2008 oppure secondo le disposizioni regionali ove presenti (Emilia, Lombardia)

Nell'ultima parte si richiamano le funzionalità riguardanti il Dlgs 311

Stima10 - UNITS 11300 - 1 e 2

1 Guida DPR 59/09 - Attuazione del DIgs 192/05

In questa parte vengono illustrate le funzionalità del programma atte a recepire il DPR 59/09. Sono state introdotte 3 nuove voci nella variabile EpocaLimiti:

- Dlg 311 2008 + Dpr 59
- Dlg 311 2010 + Dpr 59
- Emila 2008 + Dpr 59

L'impostazione si effettua in questo modo:

1. Menù Revisione - Modello relazione tecnica / Metodo di calcolo

Еp	oca limiti di legge	Dlgs 311 - 1 gen 2010 + Dpr 59	ļ
м	etodo calcolo	Digs 311 - 1 gen 2008	
Г	Edificio pubblico	Digs 311 - 1 gen 2010 Dgr Lombardia n°8/5733 - 1 gen 2008 Dgr Emilia Romagna n°156 - 1 lug 2008 Dgr Lombardia n°8/8745 - 15 gen 2009 Dlgs 311 - 1 gen 2008 + Dpr 59	
	DLg311+Le	Digs 311 - 1 gen 2010 + Dpr 59 Dgr Fmilia Bomagna p*156 - 1 lug 2008 + Dpr 59	
	C DLg311+Leg	gge 10 - Modello I2	
	C DLg311+Leg	gge 10 - Modello I3	
	C DLg311+Leg	gge 10 - Modello I4	
	C DLg311+Leg	gge 10 - Modello I5	
	C DLg311+Leg	gge 10 - Modello I6	

I modelli di relazione indicati nell'allegato E del DIgs 192/05 sono stati integrati con le nuove prescrizioni riguardanti la climatizzazione estiva.

La principale novità riguarda la climatizzazione estiva:

- (Art. 4.3) è stato introdotto un limite sul fabbisogno di energia termica per il raffrescamento dell'edificio che viene calcolato con la metodologia UNITS 11300-1
- (Art. 4.18.b) nelle località con irradiazione sul piano orizzontale Im.s>= 290 W/m² (escluso zona F) è necessario soddisfare dei vincoli in termini di massa superficiale o di trasmittanza termica periodica relativamente a tutte le pareti verticali opache (escluso quelle comprese nel quadrante NW/N/NE) e a tutte le pareti opache orizzontali e inclinate

I limiti descritti dall'Allegato C del DLgs 192/05 e s.m.i. restano in vigore: sono più ristrettivi solo nel caso di nuova costruzione o ristrutturazione di edifici pubblici o a uso pubblico (Art. 4.15). Notare la casella di spunta "Edificio pubblico", da applicare in questo caso: i valori limite dell'indice di prestazione enrgetica invernale e quelli delle trasmittanze vengono ridotti del 10%; inoltre il valore limite del rendimento globale è calcolato con la formula 75 + 4 logPn.

Da rilevare inoltre che rispetto alla versione precendente, nel caso di nuova costruzione o ristrutturazione (Modello 1), scompare la verifica delle trasmittanze con la maggiorazione del 30% (Allegato I.3.c). Il programma in questo caso indica NR (Non richiesta) nella tabella di verifica

trasmittanze.

1.1 Fabbisogno limite estivo dell'involucro

Art. 4)

3. Nel caso di edifici di nuova costruzione e nei casi di ristrutturazione di edifici esistenti, previsti dall'articolo 3, comma 2, lettere a) e b), del decreto legislativo, si procede in sede progettuale alla determinazione della prestazione energetica per il raffrescamento estivo dell'involucro edilizio (Epe, invol), pari al rapporto tra il fabbisogno annuo di energia termica per il raffrescamento dell'edificio, calcolata della tenendo conto temperatura di progetto estiva secondo la norma UNI/TS 11300 - 1, e la superficie utile, per gli edifici residenziali, o il volume per gli edifici con altre destinazioni d'uso, e alla verifica che la stessa sia non superiore a:

a) per gli edifici residenziali di cui alla classe E1, cosi' come classificati, in base alla destinazione d'uso, all'articolo 3, del decreto del Presidente della Repubblica 26 agosto 1993, n. 412, esclusi collegi, conventi, case di pena e caserme, ai seguenti valori:

40 kWh/m2 anno nelle zone climatiche A e B;
 30 kWh/m2 anno nelle zone climatiche C, D, E, e F;

b) per tutti gli altri edifici ai seguenti valori:

1) 14 kWh/m3 anno nelle zone climatiche A e B;

2) 10 kWh/m3 $\,$ anno nelle zone climatiche C, D, E, e F.

Questa verifica eseguita durante il calcolo del fabbisogno energetico e viene mostrata nella videata di riepilogo energia:

• nel pannello superiore

• nel cruscotto di visualizzazione della classe estiva

Gli stessi dati sono riportati nella relazione tecnica nel seguente paragrafo: 6.h) - Indice di prestazione termica per la climatizzazione estiva o il raffrescamento:

Valore di progetto (Epe,invol):	29.4 kWh/m²anno
Valore limite (Epe,invol,L):	30.0 kWh/m²anno

1.2 Limitazione massa superficiale e trasmittanza termica periodica

18. Per tutte le categorie di edifici, cosi' come classificati in base alla destinazione d'uso all'articolo 3 del decreto del Presidente della Repubblica 26 agosto 1993, n. 412, ad eccezione, esclusivamente per le disposizioni di cui alla lettera b), delle categorie E.5, E.6, E.7 ed E.8, il progettista, al fine di limitare i fabbisogni energetici per la climatizzazione estiva e di contenere la temperatura interna degli ambienti, nel caso di edifici di nuova costruzione e nel caso di ristrutturazioni di edifici esistenti di cui all'articolo 3, comma 2, lettere a), b) e c), numero 1), del decreto legislativo, questo ultimo limitatamente alle ristrutturazioni totali:

a) ... omissis
b) esegue, in tutte le zone climatiche ad esclusione della F, per le localita' nelle quali il valore medio mensile dell'irradianza sul piano orizzontale, nel mese di massima insolazione estiva, Im, s, sia maggiore o uguale a 290 W/mÂ²:

1) relativamente a tutte le pareti verticali opache con l'eccezione di quelle comprese nel quadrante nord-ovest / nord / nord-est, almeno una delle seguenti verifiche:

1.1 che il valore della massa superficiale Ms, di cui al comma 22 dell'allegato A, sia superiore a 230 kg/m²;

1.2 che il valore del modulo della trasmittanza termica periodica (YIE), di cui al comma 4, dell'articolo 2, sia inferiore a 0,12 $W/m \hat{A}^2$ °K";

2) relativamente a tutte le pareti opache orizzontali ed inclinate che il valore del modulo della trasmittanza termica periodica YIE, di cui al comma 4, dell'articolo 2, sia inferiore a 0,20 W/m2 °K"; c) ... omissis.

C) ... OIIISSIS.

Per questa verifica è disponibile un allegato alla relazione (indicato nel paragrafo 6.i dei Principali risultati di calcolo):

6.i) - Limitazione fabbisogno energetico per la climatizzazione estiva :

6.i.1 La prescrizione del pto 18.a (DPR 59):

6.i.2 La prescrizione del pto 18.b (DPR 59) : vedi allegato Ms-YIE

Il seguente allegato viene stampato in coda alle tabelle strutture:

DPR 59 - Par. 18.b			
LIMITAZIONE FABBISOGNO ENERGETIC	O PER LA CLIMATIZ	ZAZIONE	ESTIVA
Irradianza sul piano orizzontale solare	In.s 296	W/m ²	
Massa superficiale	Ms	kg/m²	
Modulo trasmittanza termica periodica	Y _E	W/m ² K	
	220	-	
Parete	Esposizione	M.	Y _{i∈} Verifica

Parete	Esposizione	Ms	YIE	Verifica
P.E 100 verticale		367	0.04	SI
S.E 204 verticale		20	3.92	NO
S.E 205 verticale		20	3.65	NO
SOF 602 orizzontale		511	0.28	NO

Nota: la segnalazione a video "Strutture conformi" o "Strutture non conformi" (riquadro verde/rosso) nella videata di riepilogo energetico non è comprensiva di questa verifica, **che viene fatta solo durante la stampa delle tabelle strutture.**

Opzioni:

- nel menù di stampa è possibile abilitare/disabilitare la stampa di questo argomento, cliccando sulla corrispondente voce della lista composizione relazione tecnica
- nel dialogo "Verifiche Dlg 192" è disponibile l'opzione "Verifica DPR59 Par 18b non richiesta": marcando la casella, nel titolo della pagina viene aggiunto "VERIFICA NON RICHIESTA"

Stima10 - UNITS 11300 - 1 e 2

2 Linee guida nazionali (10-07-09)

In questa parte vengono illustrate le funzionalità del programma atte a recepire il Decreto Ministeriale del 26-06-09 riguardante le Linee guida nazionali per la certificazione energetica degli edifici (GU n. 158 del 10-7-2009)

Con riferimento al punto 3 dell'allegato A (Prestazione energetica degli edifici - fase di avvio) la prestazione complessiva dell'edificio è espressa attraverso l'indice di prestazione globale EPgl limitatamente alla somma degli indici:

- EPi : indice di prestazione energetica per la climatizzazione invernale
- EPacs: indice di prestazione energetica per la produzione dell'acqua calda sanitaria

Le scale delle classi energetiche per le prestazioni parziali e globale sono conformi all'allegato 4 per edifici residenziali.

Con lo stesso procedimento vengono desunte le classi per gli edifici non residenziali (in questo caso però il servizio energetico incluso nella classificazione è solo quello di Riscaldamento)

Il programma permette di utilizzare i metodi:

• 5.1 Metodo di calcolo di progetto

• 5.2.1 Metodi di calcolo da rilievo sull'edificio

mediante l'applicazione delle UNITS 11300-1 e 2

2.1 Limitazione fabbisogno climatizzazione estiva

Il programma permette di applicare i metodi:

- 6.1 basato sulla determinazione dell'indice di prestazione termica dell'edificio per raffrescamento (EPe,involucro)
- 6.2 basato sulla determinazione di parametri qualitativi

Il programma usa in automatico il primo metodo nella compilazione degli attestati di qualificazione e di certificazione.

E' possibile tramite l'editor dell'attestato selezionare l'altro metodo

2.1.1 Metodo basato sull'EPe,involucro

Allegato A) 6.1 Sulla base dei valori assunti dal parametro EPe,invol (indicato nel programma con Ec), calcolato con metodologia UNITS-11300, si definisce la seguente classificazione, valida per tutte le destinazioni d'uso:

EPe,invol (kWh/m²anno)	EPe,invol (kWh/m ³ anno) LOMBARDIA Dgr 8745	Prestazioni	Qualità prestazionale
EPe,invol < 10	Epe<4	ottime	Ι
10< EPe,invol < 20	4 <epe<8< td=""><td>buone</td><td>Π</td></epe<8<>	buone	Π
20< EPe,invol < 30	8 <epe<12< td=""><td>medie</td><td>III</td></epe<12<>	medie	III
30 < EPe,invol < 40	12 <epe<16< td=""><td>sufficienti</td><td>IV</td></epe<16<>	sufficienti	IV
EPe, invol \geq 40	Epe>16	mediocri	V

I valori si possono visualizzare nella videata di riepilogo del fabbisogno di energia

Nota:

nel caso di edifici non residenziali il programma utilizza la colonna EPe,invol espressa in kWh/m³ tratta dalla Dgr 8745 della Lombardia (dove la qualità prestazionale viene definita con le lettere A+ ... G come da Tabella A.4.3 e A.4.4).

E' possibile usare la stessa scala di classificazione degli edifici residenziali, impostando manualmente il valore nell'editor dell'attestato (sbloccare il lucchetto)

2.1.2 Metodo basato su attenuazione esfasamento

Allegato A) 6.2 Metodo basato sulla determinazione di parametri qualitativi

Congiuntamente all'applicazione delle metodologie di cui al paragrafo 5.2, punto 3, e con le limitazioni ivi previste, in alternativa alla metodologia di cui al paragrafo 6.1, si può procedere alla determinazione di indicatori quali: lo sfasamento (S), espresso in ore, ed il fattore di attenuazione (fa), coefficiente adimensionale. Il riferimento nazionale per il calcolo dei predetti indicatori è la norma tecnica UNI EN ISO 13786, dove i predetti parametri rispondono rispettivamente alle seguenti definizioni:

- a) fattore di attenuazione o fattore di decremento è il rapporto tra il modulo della trasmittanza termica dinamica e la trasmittanza termica in condizioni stazionarie.
- b) sfasamento è il ritardo temporale tra il massimo del flusso termico entrante nell 'ambiente interno ed il massimo della temperatura dell'ambiente esterno.

Sfasamento (ore)	Attenuazione	Prestazioni	Qualità prestazionale
S>12	Fa<0,15	ottime	Ι
$12 \ge S > 10$	0,15 <fa<0,30< td=""><td>buone</td><td>Π</td></fa<0,30<>	buone	Π
$10 \ge S > 8$	0,30 <fa<0,40< td=""><td>medie</td><td>Ш</td></fa<0,40<>	medie	Ш
$8 \ge S > 6$	0,40 <fa<0,60< td=""><td>sufficienti</td><td>IV</td></fa<0,60<>	sufficienti	IV
6 <u>></u> S	0,60 <fa< td=""><td>mediocri</td><td>V</td></fa<>	mediocri	V

Sulla base dei valori assunti da tali parametri si definisce la seguente classificazione <u>valida</u> <u>per tutte le destinazioni d'uso</u>:

Nei casi in cui le coppie di parametri caratterizzanti l'edificio non rientrano coerentemente negli intervalli fissati in tabella, per la classificazione prevale il valore dello sfasamento.

Questi dati si possono visualizzare nel rapporto di stampa della UNI 13786 Comportamento dinamico della struttura:

	Modulo	∆t [h]
f: fattore decremento	0.15	-12.39
Classe prestazionale	Ottima (I)	

Questi dati sono visualizzabili anche nel corrispondente dialogo attivabile dal Menù Revisione dell'archivio strutture

2.2 Compilazione e stampa degli attestati

Gli attestati di certificazione e di qualificazione sono disponibili attivando le corrispondenti voci dal Menù File della videata principale.

Viene proposta l'anteprima di stampa

🛃 Anteprima di stampa		
File Visualizza		
	H I F H Pagina # 1 - di 4	8

	82.5	1. INFORMAZIONI G	ENER	ALI
Codice Certifi	cato			Validità
Riferimenti cat	astali			
Indirizzo edif	icio	Via P.zza Corso Viale BOL	.06NA	
Nuova costruzione	₽	Passaggio di proprietà		Riqualificazione energetica
Proprietà	2	Telefor	10	
Indirizzo	2			
E-mail				
2. C 3. GRAFICO E	ELASSE	ENERGETICA GLOB Edificio di cla RESTAZIONI ENERG	ALE C ISSE	DELL'EDIFICIO : C HE GLOBALI E PARZIALI
2. C 3. GRAFICO D	ELASSE	ENERGETICA GLOE Edificio di cla RESTAZIONI ENERG	ALE C	DELL'EDIFICIO : C HE GLOBALI E PARZIALI

Cliccando sull'icona 🔊 si attiva il dialogo per la compilazione dei vari riquadri dell'attestato.

Raccomandazioni	Informazioni generali	
Note	Codice certificato	
Impianti Progettazione	Validità	
Costruzione Soggetto certificatore	Riferimenti catastali	
Dati dichiarativi Dati di ingresso	Tipo operazione	Nuova costruzione
	Proprietà	
	Proprietà	
	Indirizzo	[
	Telefono	
	E-mail	

2.2.1 Compilazione libera

E' possibile compilare direttamente l'attestato di certificazione o qualificazione anche svincolando completamente tutti i campi calcolati. A tale scopo sono disponibili due voci nel menù opzioni:

- Attestato di certificazione Linee Guida nazionali (edit campi calcolati)
- Attestato di qualificazione Linee Guida nazionali (edit campi calcolati)

Rispetto alle corrispondenti voci del menù file, si avrà a disposizione una scheda per inserire tutti i dati derivanti dal calcolo, previo sblocco del corrispondente lucchetto:

azioni Theorem	-	Calasia En 1444-4	2. a. finding							
l ipo di editic	Tipo di edificio		ma (indice sup	0						
Zona climatio	a / regione	∠ona A Italia	<u> </u>	6						
e Classificazior	e dell'edificio	E.1(1) abitazione a	abitazione adibita a residenza con carattere continuativo							
rtificatore Servizi inclu	Servizi inclusi nella classificazione									
tivi 🔽 Riscale	🔽 Riscaldamento 🕅 Raffrescamento 🔽 Acqua calda sanitaria 📄 Illuminazione									
Ep Limite 201	0		40.25	kWh/m²-anno						
Emissioni di C	02		0.00	kg/m²-anno						
Indice energi	a primaria (Epe)		-1.00	kWh/m²-anno						
Indice energi	a limite di legge (in	volucro)	40.00	kWh/m² anno						
Indice involu	cro (Epe,invol)		0.00	kWh/m² anno						
Rendimento	mpianto raffrescari	nento								
Indice energi	a primaria (Epi)		0.00	kWh/m² anno						
Indice energi	a primaria limite di l	egge (d.lgs 192/05)	45.96	kWh/m²-anno						
Indice involu	cro (Epi,invol)		0.00	kWh/m² anno						
Rendimento	medio stagionale in	npianto riscaldamento	0.000							
Indice energi	a primaria (Epacs)		0.00	kWh/m² anno						
Indice energi	a acs límite di legg	e	-1.00	kWh/m² anno						
Indice energi	a primaria (Epill)		[kWh/m²-anno						
Indice energi	a primaria limite di l	eage		ku/h/m²-anno						

Editor dati Attestato certificazione / qualificazione

Stima10 - UNITS 11300 - 1 e 2

3 Guida alla UNITS 11300

Il programma STIMA10 7.5 versione BASE permette l'applicazione della procedura di calcolo Standard e di Progetto

Si vuole sottolineare che questa versione è una evoluzione della versione 6.5 nella quale era stata implementata la delibera approvata dalla Regione Lombardia con la DGR VIII/5018 e s.m.i. (in pratica la 15833). In molte parti le due versioni coincidono.

Per poter attivare la procedura UNITS 11300 o regionale (Lombardia o Emilia) occorre impostare nel menù Revisioni - Modello relazione tecnica l'epoca limiti corrispondente.

In questo modo alcune funzionalità del programma del DIgs 311 (Menù. videate e dialoghi) assumeranno forme diverse per una corretta applicazione delle nuove norme e/o delle nuove disposizioni regionali.

Questa guida illustra le differenze operative sostanziali per portare a termine il lavoro.

Gli argomenti trattati seguono l'ordine degli argomenti descritti nell'allegato E della 15833 Lombarda, con riferimenti ai corrispondenti paragrafi della UNITS 11300. Sono riportati alcuni paragrafi e prospetti dall'allegato E (ove si è ritenuto necessario per maggior chiarezza espositiva).

Tutti i riferimenti sono comunque indicati nelle videate corrispondenti del programma.

La 15833 è scaricabile dal sito <u>www.cened.it</u> (sezione download - documenti)

3.1 Individuazione del sistema edificio-impianto

Individuazione del sistema edificio-impianto (7.1 11300-1)

Ai fini dell'applicazione della presente metodologia di calcolo, il sistema edificio-impianto costituito è da un edificio (un involucro edilizio) o da porzioni di edificio, climatizzati attraverso un unico impianto termico e caratterizzati dalla medesima destinazione d'uso.

Esempi di suddivisione edificio-impianto (le figure sono tratte dalle analoghe della 15833):

- edificio composto da 6 unità immobiliari con medesima destinazione d'uso e impianto termico centralizzato
- edificio composto da 1 unità immobiliare e impianto termico autonomo
- edificio composto da 6 unità immobiliari con medesima destinazione d'uso e impianti termici autonomi
- edificio composto da 6 unità immobiliari con impianto termico centralizzato e due differenti destinazione d'uso

3.1.1 edificio composto da 6 unità immobiliari con medesima destinazione d'uso e impianto termico centralizzato

3.1.2 edificio composto da 1 unità immobiliare e impianto termico autonomo

Figura 1B

3.1.3 edificio composto da 6 unità immobiliari con medesima destinazione d'uso e impianti termici autonomi

(edificio composto da 6 unità immobiliari con medesima destinazione d'uso e impianti termici autonomi)

Il sistema edificio-impianto nel caso è costituito dall'involucro edilizio di ogni unità immobiliare e dall'impianto termico che lo climatizza;

Figura 1C

3.1.4 edificio composto da 6 unità immobiliari con impianto termico centralizzato e due differenti destinazione d'uso

(edificio composto da 6 unità immobiliari con impianto termico centralizzato e due differenti destinazione d'uso)

Il sistema edificio-impianto è costituito dall'involucro edilizio della porzione di edificio caratterizzata dalla medesima destinazione d'uso e dall'impianto termico che la climatizza.

3.1.5 Suddivisione in zone termiche

Per le regole di suddivisione dell'edificio in zone termiche riferirsi ai paragrafi: - UNITS11300-1 7.2

- UNITS11300-2 6

Per effettuare la zonizzazione procedere come segue:

- 1. Creare le zone termiche su files separati che devono essere salvati in un'unica cartella
- 2. Calcolare il fabbisogno energetico
- 3. Da menù File della videata energetica selezionare "Salva come zona termica"

- Creare un file di nome "Globale" che serve solo allo scopo di calcolare la somma dei Qhr delle singole zone (3 UNITS 11300-2)
- 5. Non è necessario inserire l'involucro edilizio in questo file (bastano gli stessi parametri climatici)
- 6. Calcolare il fabbisogno di energia
- 7. Da menù File attivare "Leggi zone termiche associate"
- 8. Nello schema a blocchi inserire i dati a partire dal rendimento di distribuzione
- Notare che sono presenti due pulsanti di navigazione per scorrere i risultati parziali di Emissione-Regolazione e il fabbisogno di energia primaria delle singole zone EpH,z Vedi anche:

Individuazione del sistema edificio-impianto

3.1.6 Zone non climatizzate

Per definire lo scambio termico verso zone non climatizzate è necessario usare la funzione: Crea zona non riscaldata (Menù Crea)

Il programma assegna alla zona una codifica automatica incrementale U1, U2, U3 U0 Sono disponibili al massimo 10 zone non climatizzate

Esempi di zone non climatizzate sono:

- vani scala
- sottotetti
- cantine
- autorimesse

Scambio termico verso zone non climatizzate

3.2 Fabbisogno energetico dell'involucro per la climatizzazione invernale ed estiva

Il fabbisogno energetico annuale per il riscaldamento e il raffrescamento di un ambiente climatizzato viene determinato sommando il fabbisogno energetico calcolato su base mensile.

$$Q_{NH,yr} = \sum_{j} Q_{NH,j}$$

$$Q_{NC,yr} = \sum_{j} Q_{NC,j}$$
(1)
(2)

Per l'applicazione del calcolo (vedi E.5.2 15833) è necessario seguire le seguenti indicazioni:

- Periodo di funzionamento
- Temperatura interna di progetto
- Suddivisione in zone termiche
- Valori medi mensili della temperatura media giornaliera dell'aria esterna
- Coefficiente di dispersione termica per trasmissione
- Coefficiente di dispersione termica per ventilazione
- Apporti di calore dovuti ad apparecchiature elettriche e persone
- Apporti di calore dovuto alla radiazione solare
- Apporti solari dovuti alle pareti opache esterne
- Apporti solari dovuti a spazi soleggiati
- Fattore di utilizzazione degli apporti gratuiti per il riscaldamento e raffrescamento

3.2.1 Periodo di funzionamento

Valutazione di progetto o standard

Il periodo di funzionamento convenzionale per il calcolo del fabbisogno mensile di energia per il riscaldamento è definito dal DPR 412/93

Zona climatica	Periodo di funzionamento dell'impianto				
A	1 dicembre - 15 marzo				
В	1 dicembre - 31 marzo				

С	1 novembre - 31 marzo
D	1 novembre - 15 aprile
E	15 ottobre - 15 aprile
F	5 ottobre - 22 aprile

La zona climatica si imposta nell'archivio Parametri Climatici

Il programma determina il periodo di calcolo per il fabbisogno di energia per il raffrescamento mediante la seguente condizione:

• Tutti i mesi per i quali Q_{NCi}>0 (15833)

Il fabbisogno energetico dell'involucro per la climatizzazione invernale ed estiva, sono riferiti al funzionamento continuo, cioè al mantenimento di una temperatura interna dell'edificio costante nel tempo e considerando la durata giornaliera di accensione dell'impianto pari a 24 ore;

Riferimenti: UNITS 11300-1.10

3.2.1.1 Valutazione addattata all'utenza

Attivo nella versione EXTRA.

3.2.2 Temperatura interna di progetto

Climatizzazione invernale:

La temperatura interna di progetto degli ambienti a temperatura controllata si assume:

- pari a 20 °C per tutte le categorie di edifici ad eccezione delle seguenti
- E.6(1) piscine, saune e assimilabili: 28°C
- E.6(2) e E.8: 18°C

Climatizzazione estiva:

La temperatura interna di progetto degli ambienti a temperatura controllata si assume:

- pari a 26°C per tutte le categorie ad eccezione delle seguenti
- E.6(1) piscine, saune e assimilabili: 28°C
- E.6(2) palestre e assimilabili: 24°C

Questi valori vengono impostati automaticamente quando si seleziona la categoria dell'edificio

3.2.3 Valori medi mensili della temperatura media giornaliera dell'aria esterna

I valori medi mensili delle temperature medie giomaliere dell'aria esterna per i capoluoghi di provincia sono ricavati automaticamente dall'archivio parametri climatici.

Per altre località, usando la procedura guidata di creazione Nuova località (archivio parametri climatici), verranno ricavati automaticamente per interpolazione dati climatici conformi alla UNI 10349.

3.2.4 Coefficiente di dispersione termica per trasmissione

Riferimento 15833-E.5.2.5.2

Il coefficiente di dispersione termica per trasmissione per i componenti opachi e vetrati, HT, tiene conto delle perdite di calore attraverso le strutture che separano l'ambiente climatizzato dall'ambiente circostante.

Esso viene definito dalla seguente relazione:

$$H_{\mathrm{T}} = \sum_{k} \mathbf{A}_{\mathrm{L},k} \cdot \mathbf{U}_{\mathrm{C},k} \cdot \mathbf{F}_{\mathrm{T},k}$$

(9)

dove:

A_L è l'area lorda di ciascun componente, k, termicamente uniforme, che separa l'ambiente climatizzato dall'ambiente circostante, espressa in m²;

Il valore viene calcolato moltiplicando i campi L1 e L2 di ogni struttura opaca inserita nei vari ambienti

- U_{C,k} è la trasmittanza termica corretta di ciascun componente, k, termicamente uniforme, che separa l'ambiente climatizzato dall'ambiente circostante, espressa in W/m²K;
- F_T è il fattore correttivo da applicare a ciascun componente, k, così da tener conto delle diverse condizioni di temperatura degli ambienti non climatizzati con cui essi sono a contatto.

Si veda: Sigle da usare per identificare i diversi tipi di dispersione

Per la valutazione dei ponti termici si applica l'eventuale maggiorazione introdotta con la <u>Trasmittanza</u> <u>corretta</u>

3.2.4.1 Sigle da usare per identificare i diversi tipi di dispersione

Ambiente circostante	F _T	Sigla
Esterno	1	 N, NE, E, SE, S, SW, W. NW per pareti P.E "nessuna sigla" e dt=SaltoTermicoPicco per pavimenti PAV e soffitti SOF
Terreno		T1 o T3 Vedi Scambio termico verso terreno
Cantine, garage, sottotetti, corpi scala		U1,U2U0 Vedi Scambio termico verso zone non climatizzate
Ambienti interni riscaldati da altro impianto termico		TF Vedi scambio termico verso edifici adiacenti
Vespaio aerato		T2 Vedi Scambio termico verso terreno

Le strutture contrassegnate con esposizione ZC non saranno considerate nel calcolo energetico.

3.2.4.2 Trasmittanza termica corretta

EDIFICI ESISTENTI:

Al fine di semplificare la procedura di calcolo, i ponti termici non vengono considerati separatamente. L'effetto dei ponti termici viene determinato in modo forfettario incrementando il valore di trasmittanza termica della parete in cui sono presenti. Le maggiorazioni si applicano alle dispersioni della parete opaca e tengono conto anche della presenza dei ponti termici relativi ad eventuali serramenti. La trasmittanza termica corretta (che tiene conto dell'effetto dovuto ai ponti termici) di ciascun componente opaco rivolto verso ambienti non climatizzati si determina mediante la seguente relazione:

$$\mathbf{U}_{\mathrm{C},k} = \mathbf{U}_{k} \cdot \left(1 + \mathbf{F}_{\mathrm{PT}}\right)$$

(10)

dove:

- U_{c,k} è la trasmittanza termica corretta di ciascun componente opaco, k, termicamente uniforme, che separa l'ambiente climatizzato dall'ambiente circostante, espressa in W/m²K;
- U_k è la trasmittanza termica di ciascun componente opaco, k, termicamente uniforme, che separa l'ambiente climatizzato dall'ambiente circostante, espressa in W/m²K;

F_{PT} è il fattore correttivo da applicare al valore di trasmittanza termica di ciascun componente opaco disperdente, k, cosi da tener conto delle maggiorazioni dovute ai ponti termici

Nell'archivio strutture (Modulo Correzione trasmittanza impostare l'opzione relativa alla Maggiorazione FPT.

MAGGIORAZIONE PERCENTUALI RELATIVE ALLA PRESENZA DI PONTI TERMICI					
Descrizione parete P.V-15833					
Parete con isolamento dall'esterno (a cappotto senza aggetti-balconi)	-				
Maggiorazione FPT % 0	.0				
Applicazione maggiorazione:	_				
Solo calcolo fabbisogno energetico 15833					
🔿 Calcolo potenza picco e calcolo fabbisogno energia					

E' inoltre necessario attivare la corrispondente opzione nel quadro Varie delle Impostazioni globali

La trasmittanza U da utilizzare nell'equazione [10] si riferisce alla trasmittanza del tamponamento e non alla trasmittanza dei ponti termici presenti nel componente opaco analizzato. Come si evince dalla Figura 3, l'area da considerare nel calcolo del coefficiente di dispersione termica per trasmissione HT a quella contornata in rosso (area lorda estema del componente opaco comprensiva di tamponamento e ponti termici).

Nel seguente prospetto sono indicate le maggiorazioni percentuali da applicare in funzione delle caratteristiche della parete opaca.

Descrizione della parete				
Parete con isolamento dall'esterno (a cappotto senza aggetti-balconi)	5%			
Parete con isolamento dall'esterno (a cappotto con aggetti-balconi)				
Parete omogenea in mattoni pieni o in pietra (senza isolante)				
Parete a cassa vuota con mattoni forati (senza isolante)				
Parete a cassa vuota con isolamento nell'intercapedine (ponte termico corretto)	10%			

Parete a cassa vuota con isolamento nell'intercapedine (ponte termico non corretto)	20%			
Pannello prefabbricato in calcestruzzo con pannello isolante interno				

3.2.4.3 Trasmittanza termica cassonetti

Per quanto riguarda i cassonetti, i valori di trasmittanza termica da utilizzare nel calcolo devono essere dedotti dal Prospetto VI.

Tipologia cassonetto	Trasmittanza termica				
Cassonetto non isolato*	6				
Cassonetto isolato	1				

*Si considerano isolate quelle strutture che hanno un isolamento termico non inferiore ai 2 cm.

Modo operativo:

1. Creare una S.E opaca - cassonetto e impostare la corrispondente opzione

Dati generali di input Struttura						
−Tipo di componente edilizio: ○ PORTA	Caratteristica radiativa:					
 ⊂ FINESTRA ④ CASSONETTO 	C TRASPARENTE					

2. Inserire la struttura nell'ambiente nella riga precedente la struttura finestrata

3.2.4.4 Scambio verso zone non climatizzate

Per valutare il salto termico tra il locale climatizzato e l'esterno, attraverso il locale non climatizzato, viene ricavato un fattore di correzione btr,x mediante due opzioni:

- 1. Calcolo del fattore di correzione btr,x UNI13789
- 2. Uso di valori predefiniti UNI 12831

Viene assunta nulla la portata d'aria tra la zona climatizzata e la zona non climatizzata.

3.2.4.4.1 Calcolo del fattore di correzione btr,x

Per impostare il metodo:

- 1. Compilare la tabella dispersione per ventilazione
- 2. Compilare la tabella dispersione per trasmissione inserendo le superfici esposte all'esterno
- 3. Inserire un separatore mediante Menù Crea separatore
- 4. Compilare la tabella dispersioni per trasmissione inserendo le superfici rivolte verso l'interno (anche facenti parte di scambi con altri edifici-impianti)
- 5. Esempio:

			pers	ioni p	per	venti	lazion	e				
Calcolo Hue UNITS 11300 + UNI 13789 & 1		nr	q	ric		11	12	2	13	volu	ime	HVue
		01	1	D.50	7	.30	2.80 9.60		19	6	23	
		02	0 (D.50	0	.00	0.00		0.00	0	1	0
Zone non riscaldate												
		dis	pers	ioni p	ber	trasn	nissio	ne				
ZONAU		nr	str	CO	q	es	U	t.	- 11	12	A	HTue
01 Vano Scale		01	P.E	100	1	SE	0.39	-5	1.50	9.60	9.1	4
Volume	196.2	02	S.E	204	3	SE	1.98	-5	0.80	2.20	5.3	10
Cta	20.44	03	P.E	100	1	NW	0.39	-5	1.50	9.60	9.1	4
S pianta	20.44	04	S.E	204	3	NW	1.98	-5	0.80	2.20	5.3	10
tu (picco)	8.30	05	P.E	100	1	S₩	0.39	-5	3.30	9.60	28.0	11
HVue	22.9	06	S.E	216	1	S₩	2.11	-5	1.60	2.30	3.7	8
HTue	46.6											
Ние	69.5	08	P.I	303	1		0.46	20	15.20	9.60	145.9	67
nue		09	PAV	510	1		0.41	20	2.80	7.30	20.4	8
		10	SOF	604	1		0.62	20	2.80	7.30	20.4	13

6. Impostare il Metodo di calcolo con Menù - Calcola - Metodo calcolo temperatura Zona U

Calcolo della ter	nperatura degli ambienti non risc	caldati
Metodo di calcolo	UNITS 11300 + UNI 13789 A.1	•

considerando nulli:

Φ flusso termico prodotto all'interno dello spazio "non riscaldato"

- la portata d'aria tra lo spazio riscaldato e quello non riscaldato

Il programma per valutare la temperatura di picco effettua una media ponderale considerando anche le corrispondenti temperature inserite nella colonna t. Nel calcolo energetico mensile tutte le superfici sopra il separatore sono considerate esposte alla temperatura estena media mensile, mentre quelle dopo il separatore sono considerate soggette alla temperatura interna dell'ambiente climatizzato confinante

3.2.4.4.2 Uso di valori predefiniti btr,x

Per impostare il metodo:

- 1. non è necessario compilare le tabelle di dispersione ventilazione e trasmissione
- 2. selezionare la zona non climatizzata

Calcolo Hue
UNITS 11300 pr.5 +
UNI 12831 pr.NA.4
Zone non riscaldate

dis	dispersioni per ventilazione									
nr	q	ric	11	12	13	volume	HVue			
01	1	0.50	0.00	0.00	3.30	0	0			
02	0	0.50	0.00	0.00	3.30	0	0			

ZONA U 02|Vano Scale

0.0	Volume
0.00	S pianta
0.80	tu (picco)
0.0	HVue
0.0	HTue
0.0	Hue

dispersioni per trasmissione

nr	str	CO	q	es	U	t	- 11	12	Α	HTue
01		000	1		0.00	24	0.00	0.00	0.0	0

3. Menù Calcolo - Metodo calcolo temperatura Zona U

Calcolo della temperatura degli ambienti non riscaldati

×

Meto	do di calcolo UNITS 11300 pr.5 + UNI 12831 pr.NA.4 💌 tu [*C] = [0.8
	Tipo di vano	bu	Tu
01	LOCALI: nr. pareti del vano non riscaldato rivolte verso esterno		
02	- con una parete esterna	0.4	10.4
03	- senza serramenti esterni e con almeno due pareti esterne	0.5	8.0
04	- con serramenti esterni e con almeno due pareti esterne (p.es. garages)	0.6	5.6
05	- con tre pareti esterne (p.es. vani scala esterni)] 0.8	0.8
06	CANTINE:		
07	- senza finestre/serramenti esterni	0.5	8.0
80	- con finestre/serramenti esterni	0.8	0.8
09	SOTTOTETTI:		
10	- con tasso di ventilazione elevato, senza rivestimento con feltro o assito	1.0	- 4.0
11	- altri tetti non isolati	0.9	- 1.6
12	- tetti isolati	0.7	3.2
13	DISIMPEGNI INTERNI (senza muri esterni - ric. <0.5 Vol/h)	0.0	20.0
14	DISIMPEGNI VENTILATI (aperture/volume > 0.005 m²/m³)	1.0	- 4.0

ti

20.0 🔹

te

-4.0 🔹

🗸 tutte NR

OK

Selezionando una delle righe della tabella, viene evidenziato il valore della Tu che verrà usato nel calcolo di picco (è anche possibile inserire direttamente il valore di Tu). Il valore di bu=btr,x verrà usato nella formula UNITS 11300-1(18) per calcolare il coefficente Hu (ex Hie UNI 10344)

3.2.4.5 Scambio termico verso il terreno

Vengono considerate tre tipologie di scambio termico verso il terreno:

- Pavimento a livello del terreno (indicare nel campo esposizione la sigla T1)
- Pavimento su vespaio aerato (indicare nel campo esposizione la sigla T2)
- Pavimento interrato e parete controterra (indicare nel campo esposizione la sigla T3)

Il calcolo del coefficiente di dispersione verso il terreno Hg dipende dalle opzioni <u>Terreno default</u> (Attivabili dal menù opzioni):

- 1. calcolo in base alla UNI EN ISO 13370
- 2. calcolo semplificato per edifici esistenti (formula 20 della UNITS 11300-1)

La modifica e la visualizzazione dei dati dettagliati per ogni singolo ambiente avviene nel seguente modo:

- posizionare l'evidenziatore di riga sulla struttura pavimento contrassegnata dalla sigla terreno (T1, T2 o T3)
- 2. cliccare sull'icona del terreno oppure Menù Revisione Terreno

Da notare che se è marcata la casella di ricalcolo automatico del DT verso zone non riscaldate e terreno (Menù Revisione - Impostazioni calcolo di picco) il DeltaT del pavimento usato per il calcolo delle dispersioni di picco, non è un valore di input.

3.2.4.5.1 Opzioni Calcolo Terreno

dialogo	si attiva dal Menù Opzioni - Terreno default					
npostaz	ioni generali del progetto					
TERRE	10 default 🔲 RICALCOLO GLOBALE					
i	conduttività termica del terreno	2.00				
PER PA Impostar	VIMENTI A LIVELLO DEL TERRENO e "T1" nel campo esposizione "es"					
TIPO DI	ISOLAMENTO: VERTICALE	•				
D	larghezza dell'isolamento di bordo	1.00				
dis	spessore dello strato perimetrale isolante	0.02				
ISO	codice isolante	1				
PER PA	VIMENTI SU SPAZIO AERATO e "T2" nel campo esposizione "es"					
z	altezza del pavimento sul livello del terreno esterno	1.00				
е	area delle aperture di ventilazione per unità perimetrale	0.10				
fv	coefficiente di protezione del vento	0.05				
PER PAVIMENTI INTERRATI Impostare "T3" nel campo esposizione "es"						
z	profondità del pavimento al di sotto del livello del terreno	1.00				
🗸 Usa	valori prospetto 6 UNITS 11300-1 btr,g (EDIFICI ESIS	TENTI)				
1 T1 ~	13 · Davinerito e Dalete Curitioteria 💦 0.40					

- RICALCOLO GLOBALE: spuntando la casella, i valori indicati per le diverse tipologie di scambi termici verso il terreno, saranno impostati in tutti gli ambienti con strutture rivolte verso il terreno (durante il calcolo del fabbisogno di energia)
- Usa valori prospetto 6 UNITS 11300-1: il calcolo del coefficiente di dispersione Hg è eseguito mediante la (20) usando i valori del prospetto 6 per il coefficente btr,g. Questo metodo semplificato è consentito nel caso di edifici esistenti, in assenza di precise informazioni.
- Riferirsi alla UNI EN ISO 13370 per il significato dei vari parametri (la norma viene usata solo se la precedente opzioni non è marcata)

3.2.4.5.2 Pavimento a livello del terreno

Terreno UNI 13370

Tipo terreno	2. T2 PAVIMENTO SU INTERCAPEDINE (UNI13370	- 10)
z	altezza del pavimento sul livello del terreno esterno	1.00
з	area delle aperture di ventilazione per unità di perimetro	0.10
fv	coefficiente di protezione dal vento	0.05
i	conduttività termica del terreno	2.000

DETTAGLIO DI CALCOLO:

PAVIMENTO SU' INTERCAPEDINE	^
A = area del pavimento = 18.1 P = perimetro disperdente del pavimento = 5.40 z = altezza del pavimento sul livello del terreno esterno = 1.00 w = spessore delle pareti perimetrali esterne	
Rse = resistenza termica superficiale esterna	

3.2.4.5.4 Pavimento interrato

Ter	reno UN	ll 13370	
Tip	o terren	3. T3 PAVIMENTO INTERRATO (UNI13370 - 11)	•
	z	profondità del pavimento al di sotto del livello del terreno	1.00
	i	conduttività termica del terreno	2.000

DETTAGLIO DI CALCOLO:	
A = area del pavimento = 31.3 P = perimetro disperdente del pavimento = 5.00 z = profondita' del pavimento al di sotto del liv. terreno = 1.00 w = spessore delle pareti perimetrali esterne = 0.42 Rsi = resistenza termica superficiale interna (flusso disc) = 0.170 Rsi = resistenza termica del pavimento = 1.476 Rw = resistenza termica della parete = 1.169 Rse = resistenza termica superficiale esterna = 0.040 j = conduttivita' termica del terreno = 2.000	
dt= spessore equivalente totale	~

Nota: nel caso di un ambiente senza pavimento controterra, ma con solo la parete addossata al terreno, è necessario inserire comunque un pavimento fittizio esposto a T3 con Area nulla, altrimenti l'algoritmo di calcolo non riconosce la dispersione della parete (Ls=0)

3.2.4.6 Scambio verso edifici adiacenti (TF)

Lo scambio verso locali adiacenti riscaldati di un altro edificio-impianto si contraddistingue inserendo la sigla TF nel campo esposizione "es" della tabella dipersioni per trasmissione. Il quadro Ambienti vicinori permette di effettuare le impostazioni previste dalle UNITS 11300-1, EN 12831, 13789.

Nel calcolo per il raffrescamento, la temperatura interna estiva degli edifici adiacenti è assunta convenzionalmente pari a 26°C.

3.2.4.6.1 Impostazioni ambienti vicinori

Il quadro si attiva dal dialogo Impostazioni per calcolo fabbisogno energia

Con riferimento al prospetto NA.5 della EN 12831, sono previsti due casi di locali adiacenti di altri edifici-impianti

- appartenente ad edificio separato: nel qual caso si adotta come temp. interna quella media stagionale esterna)
- appartenente ad altra porzione dello stesso edificio (ad es. appartamento): il programma propone di inserire un valore di input (nel caso ad es. sia stabilito contrattualmente) oppure propone il calcolo semplificato sulla base del prospetto NA.6

P è la superficie delle pareti esterne, espressa in percentuale della superficie totale dell'involucro dell'unità immobiliare.

Per maggiori informazioni sul significato dei termini si rimanda alla 12831

3.2.4.7 Trasmittanza termica finestre

La trasmittanza termica delle finestre singole,U_w, si calcola in base a quanto riportato nella norma EN ISO 10077-1, mediante la relazione:

$$U_{W} = \frac{A_{g}U_{g} + A_{t}U_{t} + l_{g}\Psi_{g}}{A_{g} + A_{t}}$$
(11)

Modo operativo:

Come nella versione precedente impostare i dati nel modulo seguente:

n en				
Dati generali di input Struttura				
TRASMITTANZA TERMICA DEI COMPONENTI EDILIZI FINEST UNI10077-1	RATI			
L1= larghezza lorda serramento [m]	0.60			
L2= altezza lorda serramento [m]	1.30			
Af= area del telaio [m²] 0.13 Ag= Area vetro:	0.65			
Ft= coefficiente di riduzione dovuto all'area del telaio	0.833			
g= trasmittanza solare dell'elemento	0.700			
Fc= coeff. riduzione dovuto a tendaggi interni e/o esterni	0.850			
Emissività termica del componente trasparente	0.200			
Ug = trasmittanza termica del componente trasparente	1.600			
Serramento SINGOLO 🔹 Telaio: in alluminio ta	glio termic			
d = parametro geometrico funzione del tipo di configurazione	20.00			
Uf = trasmittanza termica del telaio	2.800			
Lg= lunghezza perimetrale della superficie vetrata	3.80			
trasmittanza lineare dovuta al distanziatore	0.080			
Uw= trasmittanza termica della superficie finestrata	2.190			
Tipo di tapparella				
DR = resistenza termica aggiuntiva (tapparelle abbassata)	0.16			
Uws= trasmittanza termica complessiva 1/((1/Uw)+DR)	1.622			
Um = trasmittanza termica mediata nel tempo UNI10379-[5.2.i]	1.906			
Premere il pulsante kp=Uw per impostare il valore della trasmittanza di picco kp con la trasmittanza del kp = Uw componente finestrato Uw				
Descrizione dello strato vetrato: Superfici vetrate con vetro camera 4-15-4 (U=1.60) con argon e telaio (s				

3.2.4.7.1 Chiusure oscuranti

Nel caso di presenza di tapparella è necessario valutare Uws per tener conto della resistenza addizionale (UNI 10077-1 formula 7).

In mancanza di dati i valori ΔR si possono desumere dal seguente dialogo.

39

Resistenza termica addizionale per finestre con chiusure chiuse

UNI EN ISO 10077-1 appendice G

Valori della resistenza termica addizionale, ΔR per finestre dotate di chiusure chiuse

Tipo di chiusura	Resistenza termica caratteristica della chiusura	Resistenze termiche addizionali per una specifica permeabilità all'aria delle chiusur ∆R m²·K/₩			
	Rsh m²·K/₩	Alta permeabilità all'aria	Media permeabilità all'aria	Bassa permeabilità all'aria	
Chiusure avvolgibili in alluminio	0.01	0.09	0.12	0.15	
Chiusure avvolgibili in legno e plastica senza riempimento in schiuma	0.10	0.12	0.16	0.22	
Chiusure avvolgibili in plastica con riempimento in schiuma	0.15	0.13	0.19	0.26	
Chiusure in legno da 25 mm a 30 mm di spessore	0.20	0.14	0.22	0.30	

La trasmittanza corretta è determinata con la UNITS 11300-1. formula 17

Uw, corr = 0.6 Uws + 0.4 Uw

3.2.4.7.2 Trasmittanza vetrate Ug

40

Trasmittanza Ug di vetrate doppie e triple (UNI 10077-1 C.2)								
Тіро	Dopp	- Die vetrate	•					
Vetro	Vetri	senza tratt. super	f. (vetro	normale)	; emissivi	tà =0.89		
	Tipo di gas nell'intercapedine (concentrazione >=90%)							
		Dimensioni [mm]	Aria	Argon	Krypton	SF6	Xenon	
		4-6-4	3.30	3.00	2.80	3.00	2.60	
		4-9-4	3.10	2.90	2.70	3.10	2.60	
		4-12-4	2.80	2.70	2.60	3.10	2.60	
		4-15-4	2.70	2.60	2.60	3.10	2.60	
		4-20-4	2.70	2.60	2.60	3.10	2.60	
		4-20-4	2.70	2.60	2.60	3.10	2.60	

Conforme al prospetto C.1 UNITS 11300-1

3.2.4.7.3 Trasmittanza telai Uf

Il dialogo permette di selezionare alcuni tipi di trasmittanza dei telai in conformità alle norme UNITS 11300-1 e UNI EN 10077-1 (è indispensabile l'uso della norma per una corretto uso del dialogo).

3.2.4.7.4 Trasmittanza termica lineica distanziatore

Valori della trasmittanza termica lineare (UNI EN ISO 10077-1 appendice E)						
Valori della trasmittanza termica lineare Ψ del giunto tra telaio e vetrata per distanziatori per vetro in alluminio e in acciaio (non in acciaio inossidabile) Trasmittanza migliorata						
Materiale del telaio	Vetrata doppia o tripla, vetro non rivestito, intercapedine con aria o gas Ψ W/(m·K)	Vetrata doppia con bassa emissività, tripla con due rivestimenti a bassa emissività, intercapedine con aria o gas ¥ W/(m·K)				
Legno o PVC	0,05	0,06				
Metallo con taglio termico	0,06	0,08				
Metallo senza taglio termoo	0,01	0,04				

42

3.2.4.7.5 Uw tipico 1.2 x 1.5 (Area telaio 20%)

Valori di trasmittanza per finestre verticali di dimensioni simili a 1.2 x 1.25

3.2.5 Coefficiente di dispersione termica per ventilazione

Modalità operative:

effetuare le impostazioni nel dialogo Revisione-Impostazioni per calcolo fabbisogno energia - Portata aria ventilazione

ontesto	Apporti interni	Varie	Capaci	tà termica	Locali adiacenti (TF)	Portata ventilazione
eterminaz	ione portata di ventila	azione	valore glo	bale	T	
					Ventilazione meccani	Ca
) eterminaz	tione numero ricambi:	Valore in	put	•	Flusso	semplice 🗨
Vop:	Portata aria esterna	[㎡/h]		39.6	Coeff. contemporaneil	à 🛛 sistema a portata fissa 💌
ns:	Indice affollamento	(pers/n	7]	0.04		k [·] 1.00
ns corr	retto = ns*0.6	(pers/n	ŕ]	0.02	Efficienz	a recuperatore [-] 0.00
A:	Superficie utile	[m²]		79.0	🗖 Ventilazione notturna	(free-cooling) - raffrescamento
V: - 1	Volume netto	[m³]		224.0		qve,extra (m²/h) 0.00
		n [h-1]	0.500		bve,extra [-] 1.00

Determinazione portata aria rinnovo: **(ATTIVA SOLO L'OPZIONE VALORE GLOBALE** Determinazione del numero di ricambi:

- valore input
- Vop, ns sono ricavati automaticamente in base ai prospetti X e XI
- Vop, ns input

Notare che al valore di ns viene poi applicato il coefficiente di correzione (60%) indicato nelle UNITS 11300-1

Se diverso da input, il valore del numero di ricambi sarà desunto automaticamente dalla formula (16) Nel caso di edifici residenziali senza sistema di ventilazione meccanica (casella non marcata) verrà assunto il valore convenzionale 0.3.

RECUPERATORE: Si tenga presente che il programma consente di tener conto del recupero secondo due modalità:

1) Se si inserisce un valore nel campo Efficienza recuperatore diverso da zero, la dispersione per ventilazione viene ridotta del fattore (1-bve*efficienza)

2) Se invece si inserisce l'efficienza nel sottosistema recuperatore (come nella procedura 15833 Lombardia) allora la riduzione del fabbisogno energetico dovuta al recupero di calore viene tenuta in conto nel calcolo del fabbisogno di energia primaria

E' a carico del progettista la mutua esclusione dei due valori.

NOTA BENE:

I dati di ventilazione impostati ambiente per ambiente con il dialogo del Dlg311 non vengono considerati (nelle verzione DLUS ei derè le pescibilità di impostere i deti per le pertete d'erie di rippove e livelle

(nella versione PLUS si darà la possibilità di impostare i dati per la portata d'aria di rinnovo a livello di ambiente)

Riferimento UNITS 11300-1 par 5.2 e 12 fve,t,k=1 (versione BASE)

Riferimento 15833 E.5.2.6.1

Il coefficiente di dispersione termica per ventilazione, H_v, si determina mediante la seguente relazione:

$$H_{\mathcal{V}} = \sum_{k} V_{a,k} \cdot \rho_{a} \cdot c_{a}$$

dove:

- Hv è il coefficiente di dispersione termica per ventilazione tra l'ambiente climatizzato e l'ambiente circostante, espresso in W/K;
- V_a è la portata d'aria di rinnovo di ciascuna zona, k, con ricambi d'aria uniformi, espressa in m³/h;

 $\rho_a c_a$ è la capacità termica volumica dell'aria, pari a 0,34 Wh(m³K).

La portata d'aria di rinnovo di ciascuna zona viene calcolata come segue:

$$V_a = V \cdot n$$
 (15)

dove:

V è il volume netto dell'ambiente riscaldato considerato, espresso in m³;

n numero di ricambi d'aria previsti in funzione della destinazione d'uso, espresso in h⁻¹.

All'interno di un edificio, allo scopo di assicurare sufficienti condizioni sia igieniche che di comfort, è necessario garantire una portata minima d'aria di ventilazione. Inevitabilmente questo rinnovo d'aria negli ambienti determina un incremento dell'energia dispersa.

Il numero dei volumi d'aria ricambiati in un'ora si determina come segue:

- per gli edifici residenziali, qualora non sussistano ricambi d'aria controllati, esso a fissato convenzionalmente in 0,5;
- per tutti gli altri edifici (e per gli edifici residenziali qualora sia presente un sistema di ventilazione meccanica) si assumono i valori di ricambio d'aria di progetto

In mancanza di dati certi l'utente può riferirsi alla formula [16] per il calcolo numero dei volumi d'aria ricambiati in un'ora:

$$\mathbf{n} = \frac{\left(\mathbf{v}_{op} \cdot \mathbf{n}_{s} \cdot A\right)}{V}$$

(16)

(14)

dove:

n	i numero di ricambi d'aria previsti in funzione della destinazione d'uso, espresso in h ⁻¹ ;
V _{op}	la portata d'aria esterna richiesta nel periodo di occupazione dei locali, espressa in m ³ /h
	per persona (Prospetto X);

n _s èl'	ndice di affollamento, ossia il numero di persone ai fini progettuali per ogni metro
qua	adrato di superficie calpestabile (Prospetto XI);
A èla	a superficie utile di pavimento, espressa in m ² ;

V è il volume netto dell'ambiente a temperatura controllata considerato.

Classificazione degli edifici per categoria	V _{op}
Edifici residenziali, collegi,luoghi di ricovero, case di pena, caserme, conventi	39,6
Alberghi, pensioni	39,6
Edifici per uffici e assimilabili	39,6
Ospedali, cliniche, case di cura e assimilabili	39,6
Edifici adibiti ad attività ricreative, associative e di culto	28,8
Attività industriali, Attività commerciali e assimilabili	36
Ediffici adibiti ad attività sportive	36
Edifici adibiti ad attività sportive	21,6

Prospetto X - Portata d'aria esterna, VOP, in edifici adibiti ad uso civile

Classificazione degli edifici per categoria	n _s
Edifici residenziali	0,04
Collegi, luoghi, case di pena, caserme, conviventi	0,10
Alberghi, pensioni	0,05
Edifici per uffici e assimilabili	0,12
Ospedali, cliniche, case di cura e assimilabili	0,08
Edifici adibiti ad attività ricreative, associative e di culto	1,00
Attività industriali, Attività commerciali e assimilabili	0,25
Edifici adibiti ad attività sportive	0,70
Edifici adibiti ad attività scolastiche	0,50
Description VI India: di affaillancanta non anni materia	and a start of the

Prospetto XI — Indici di affollamento per ogni metro quadro di superficie calpestabile, ns

3.2.6 Apporti di calore dovuti ad apparecchiature elettriche e persone

Modalità operative:

impostare i dati tramite il dialogo Revisione - Impostazioni per calcolo fabbisogno energia:

Determinazione dell'area degli appartema maggiore di 170 m² (per il calcolo degli ap	enti con area utile pporti interni)
 Automatica a livello globale Automatica a livello piano Automatica a livello zona Automatica a livello ambiente Valori di input 	
Area utile totale di pavimento degli appartamenti con A<=170 m² N° appartamenti con A<=170 m² N° appartamenti con A>170 m²	80.0 1 0

Per la corretta applicazione automatica della Formula par. 13.1.1 UNITS 11300-1 è necessario che il programma determini quali sono gli appartamenti con area utile $<=170 \text{ m}^2$ e quali sono quelli con area utile $> 170 \text{ m}^2$.

(FUTURA MIGLIORIA)

Se si seleziona l'opzione in automatico il valore verrà desunto da Spianta del corrispondente livello (globale,piano,zona,ambiente) cioè dalla somma delle aree di tutti i codici PAV.

Il valore degli apporti globali viene desunto automaticamente dal prospetto 8 in base alla destinazione d'uso impostata.

Riferimento 15833 E.5.2.7

Qualunque calore generato all'interno dello spazio riscaldato, con l'esclusione del sistema di riscaldamento, contribuisce ad accrescere i cosiddetti apporti di calore interni, Q_I. Tra le principali sorgenti di calore interne vi sono:

- gli apporti dovuti al metabolismo degli occupanti;
- il calore sprigionato dalle apparecchiature elettriche e dagli apparecchi di illuminazione.

Gli apporti di calore dovuti alla presenza di queste sorgenti sono ricavati mediante la seguente

relazione:

$$Q_{\rm I} = {\rm N} \cdot {\rm A}_{\rm L} \cdot \alpha \cdot {\rm F}_{\rm oc} \cdot 10^{-3}$$
⁽¹⁷⁾

dove:

Qı	è l'apporto di calore dovuto ad apparecchiature elettriche e persone, espresso in
	kWh;
Ν	numero dei giomi del mese;
AL	è la superficie utile di pavimento, espressa in m ²
α	è il valore globale degli apporti intemi, espresso in W/ m² (Prospetto 8);
Foc	è il periodo di occupazione giornaliero dei locali, espresso in h (Prospetto X-15833);

Destinazione d'uso	Apporti globali α W/m ²
Edifici E.1(1) e E.1(2) (abitazioni) $A_L < 170 \text{ m}^{2}$ (*)	5.294 - 0,01557 ·A _L
E.1(3), E.2, E.8	6
E.3, E.4(1), E.4(2), E.5	8
E.4(3), E.6(1)	10
E.6(3), E.7	4

(*)Negli edifici residenziali, per le unità immobiliari con area utile riscaldata in pianta superiore a 170 m² il valore degli apporti gratuiti, QI, si calcola moltiplicando 10.8 kWh/giorno per il numero dei giorni del mese e il numero delle unità immobiliari.

Prospetto 8 — Valori globali degli apporti interni.

3.2.7 Apporti di calore dovuto alla radiazione solare

L'apporto di calore viene calcolo con la formula (11). Si distinguono tre tipologie di apporti di origine solare:

- 1. dovuto alle superfici finestrate
- 2. dovuto alle pareti opache
- 3. dovuto a spazi soleggiati non climatizzati (ad es. serre)

3.2.7.1 Irradiazione globale giornaliera media mensile

L' Irradiazione globale giornaliera media mensile incidente nelle province lombarde, viene ricavata automaticamente dall'archivio dei parametri climatici, trasformando il valore calcolato tramite la UNI 8477/1 in kWh/m². (valori conformi al prospetto XVIII)

Si tenga presente inoltre che il programma applica la procedura di interpolazione prevista dalla UNI10349 per località diverse dai capoluoghi di provincia. (non indicato nella 15833)

3.2.7.2 Fattori schermatura

Il dialogo si attiva dalle Impostazioni per calcolo fabbisogno energia

	Determinazione fattore riduzione apporto solare dovuto a ostruzione esterna (P.XV) Contesto Campagna					
	S E/O N Fh = 1.00 1.00					
A THE REAL PROPERTY AND A	Applicazione: © Usa dati prospetto © Usa valori UNI 831					

Si tenga presente che usando la prima opzione (15833-UNITS) verrà applicato un fattore di schermatura Fhor su tutte le superfici applicando un Fhor derivante da un angolo sull'orrizionte ricavabile dalla seguente tabella:

Contesto	Angolo sull'orizzonte		
Centro storico	40°		
Centro città	30°		
Perfieria	20°		
Campagna	Nessuna ostruzione		

Usando l'altra opzione UNI832-UNITS 11300-1, verrà usato il fattore Fhor che si calcolacon il corrispondente codice dell'archivio ostruzioni (verranno applicate le tabelle dell'appendice D UNITS 11300-1).

Per gli aggetti verticali e orizzontali la procedura è quella usata per il Dlg311 (Gestione schermi).

Riferimento UNITS 11300-1 14.4:

Il fattore di riduzione dovuto all'ombreggiatura deve essere calcolato mediante l'equazione [25]. $F_s = F_h \cdot F_o \cdot F_f$

(25)

dove:

- $F_{\rm s}$ è il fattore di riduzione dovuto all'ombreggiatura;
- $\vec{F_h}$ è il fattore di ombreggiatura parziale dovuto ad ostruzioni esteme, definito nella figura 6
- $\vec{F_o}$ è il fattore di ombreggiatura parziale dovuto ad aggetti orizzontali, definito nella figura 7a
- *F*_f è il fattore di ombreggiatura parziale dovuto ad aggetti verticali, definito nella figura 7b

3.2.7.3 Gestione schermi

Il programma semplifica l'introduzione dei dati legati alle diverse tipologie d'ostruzioni previste visualizzando i disegni d'esempio delle Norme UNI 10344 -UNI 832 e della Delibera Lombardia 15833, conformi alla UNITS 11300-1

48

NOTE:

- la simbologia indicata è riferita alla UNI10344-E ed è conforme sia alla UNI832-G.2, sia alla 15833-E.5.2.7 come pure alla UNITS 11300-1
- REGIONE LOMBARDIA: i fattori di riduzione dovuti all'ombreggiatura vengono calcolati con metodologia UNI832-G.2 (dalla quale sono desunti i prospetti XV-XVI-XVII della 15833)
- ALTRE REGIONI: i fattori di riduzione vengono calcolati in base all'appendice D UNITS
 11300-1
- L'opzione INPUT dei tre fattori di schermatura non è disponibile nel caso UNITS 11300-1 (verranno usati sempre i valori tabellati interpolati mediante i tre parametri angolari ricavabili dalle dimensioni geometriche inserite).

Ostruzione esterna

L'ostruzione esterna può essere legata all'orografia del territorio o alla presenza di edifici. Il calcolo del coefficiente di ombreggiatura (F_{\circ}) si può eseguire imputando semplicemente la distanza (d) e l'altezza (H) rispetto al centro del piano della superficie della struttura ombreggiata (x rappresenta l'angolo di inclinazione la cui tangente è H/d).

Aggetti orizzontali e/o verticali

Il calcolo del coefficiente di ombreggiatura (F_a) si può eseguire inserendo i parametri richiesti corrispondenti alle quote illustrate in figura dove per esempio rispetto la finestra, costituisce aggetto orizzontale il terrazzo e aggetto verticale la parete sporgente posta a lato.

In alternativa è possibile inserire direttamente il valore globale del fattore di schermatura (F_s) con un doppio clic sx mouse per aprire il campo input; ripetere l'operazione per eliminare la forzatura e premere l'icona calcola per ripristinare il risultato automatico.

Ricordiamo che i parametri di input richiesti nel caso di aggetti orizzontali e verticali (Legge 10/91) restano validi anche per l'eventuale calcolo estivo (**STIMATFM**); le ostruzioni esterne utilizzano invece due diverse procedure e richiedono la compilazione di quadri distinti.

Funzionalità disponibili:

- Nuovo schermo
- Archivio schermi
- Calcola
- Dettagli

Conferma (ﷺ...<*F4*>) e riporta i dati introdotti (schermi) sulla riga struttura di partenza del foglio principale.

Il programma segnala la presenza di schermi con evidenziazione rossa e un asterisco sull'acronimo del tipo di struttura, nel quadro di inserimento dati degli ambienti.

3.2.7.3.1 Nuovo schermo

Crea una posizione di archivio ($\le ... < F6$) per l'inserimento della nuova tipologia di ostruzione (fattore di schermatura diverso da 1)

3.2.7.3.2 Archivio schermi

L'archivio contiene alla prima posizione (codice 01) un fattore di schermatura con valore di DEFAULT pari a 1, **corrispondente a nessun ombra riportata**, (<u>da lasciare IMMUTATO</u>) che il programma considera di default per ogni struttura costituente l'edificio con salto termico di picco.

Archin						1.8	_
co	descrizione schermo	Fs	Fo	Fao	Fav		
01	NESSUNO SCHERMO (LASCIARE INVARIATO)	1.00	1.00	1.00	1.00		
02	Terrazzo esposto SW	0.10	0.11	0.93	1.00		
			-				V UK
						- 1	🗙 Cancel
							🦻 <u>Н</u> еlp

Attenzione:

Per ogni nuovo lavoro creato, il programma predispone un nuovo archivio ostruzioni. Al suo interno sono visualizzati in formato tabella, i coefficienti di ombreggiatura risultanti dal calcolo. L'archivio <u>è comune</u> sia per componenti trasparenti che opachi ed è disponibile per tutte le strutture esterne

3.2.7.3.3 Calcola

Attiva la funzione di calcolo dei singoli coefficienti di ombreggiatura e del fattore globale di schermatura F_s ($\leq ... < F3$) in funzione dei dati presenti nel quadro corrente. Può essere usato in ogni momento per aggiornare in tempo reale i risultati dei calcolo. In questo dialogo viene usato l'algoritmo della UNI832, mentre nel calcolo energetico vengono interpolati i prospetti dell'appendice D - UNITS 11300-1. Ad es Fhor alla latitudine di 45° per ogni esposizione.

3.2.7.3.4 Dettagli

Propone in una finestra di sola visualizzazione il dettaglio di calcolo con i valori dell'apporto energetico solare suddiviso mensilmente per il periodo di riscaldamento considerato, insieme alle condizioni di ombreggiatura.

Esempio: Componente TRASPARENTE (S.E)

Il quadro presenta le caratteristiche principali del componente edilizio dal foglio principale (categoria e codice, orientamento, area) o desunte dal rispettivo archivio strutture (*A*,*g*,*Fc*,*Ff*).

La procedura determina così l'area equivalente esposta (A_e) della superficie trasparente in applicazione della UNI 10344 Par. 11.2.1.(UNI832-[15]) e mostra la quota mensile/totale (MJ) di contributo energetico dovuto alla radiazione solare. Il calcolo tiene conto dell' eventuale fattore di schermatura (F_s)

NOTA 15833-(18):

 Il parziale indicato in questa anteprima non tiene conto del fattore di riduzione 0.85 (per tener conto dell'inclinazione dei raggi solari), che viene invece utilizzato nel calcolo del fabbisogno di energia (potenza solare mensile esportata nel file XML per ogni struttura)

Esempio: Componente OPACO (S.E)

STRUTTURA : 100 OPACA : Esposizione: NE A area (m²) 8.1 U trasmittanza termica della parete (W/m²K): 0.387 he coefficiente superficiale di scambio termico (W/m²K): 25.0 a coeffic. di assorbimento della radiazione solare 0.60 Fer coeffic. di riduzione dovuto all'area del telaio 1.00	*
MJ 3.8 gennaio 6.1 febbraio 12.4 marzo 18.6 aprile 8.4 ottobre 4.2 novembre 3.3 dicembre	
Sommaj(qsj·Ae·Nj) = 56.8 MJ	-

Il quadro presenta le caratteristiche principali del componente edilizio dal foglio principale (categoria e codice, orientamento, area) o desunte dal rispettivo archivio strutture (U, α , F _{er}, h_e).

La procedura determina così l'area equivalente esposta (Ae) della superficie opaca in

X

applicazione della UNI 10344 Par. 11.2.2.(UNI832-D.5.3 e UNI10379-2005-5.3.2) e mostra la quota mensile/totale (MJ) di contributo energetico dovuto alla radiazione solare. Il calcolo tiene conto dell'eventuale fattore di schermatura (F_s)

NOTA 15833-(20):

- Il contributo degli apporti solari viene trascurato nel periodo di riscaldamento (E.5.2.9)
- Il parziale indicato in questa anteprima non tiene conto del fattore di riduzione 0.85 (per tener conto dell'inclinazione dei raggi solari), che viene invece utilizzato nel calcolo del fabbisogno di energia (potenza solare mensile esportata nel file XML per ogni struttura)

3.2.7.4 Apporti solari dovuti alle superfici finestrate

Modalità operative:

- 1. Impostazione Ft, g, Fc
 - Quadro caratteristiche struttura finestrata (archivio struttura):
- Impostazione Fs Quadro Fattori di schermatura per la definizione degli aggetti Quadro Revisioni-Impostazione RegioneLombardia per la variabile contesto (Prospetto XV)
- 3. Impostazioni Qss Vedi paragrafo <u>Spazi soleggiati</u>

Riferimento 15833 E.5.2.8

L'energia dovuta agli apporti solari sulle superfici trasparenti nella stagione di riscaldamento, Qs, viene calcolata mediante la seguente relazione:

$$Q_{\rm S} = \mathbf{N} \cdot \sum_{j} \overline{\mathbf{H}}_{\rm s,j} \cdot \left(\sum_{i} \mathbf{A}_{\rm L,j} \cdot \mathbf{F}_{\rm T} \cdot \mathbf{g}_{\perp j} \cdot \mathbf{F}_{\rm S} \right) \cdot \mathbf{0.85} + Q_{\rm S,S}$$
(18)

Nella formula manca la moltiplicazione per Fsh,gl. Inoltre si usa solo g (e non g normale)

dove:

- Qs è l'apporto di calore dovuto alla radiazione solare attraverso le superfici trasparenti, espresso in kWh;
- N è il numero dei giorni del mese;
 è l'irradiazione globale giornaliera media mensile incidente sulla superficie trasparente con esposizione, j, espressa in kWh/m2. I valori dell'irradiazione globale giornaliera media mensile, a seconda dell'esposizione, sono riportati nel Prospetto XVIII;
- AL è la superficie lorda della superficie del serramento vetrato, i, (assunta pari a quella dell'apertura realizzata sulla parete), espressa in m²;
- FT è il coefficiente di riduzione dovuto al telaio, pari al rapporto tra l'area trasparente e l'area totale dell'unità vetrata (si assume un valore convenzionale pari a 0,8 in assenza di informazioni);
- g⊥ è la trasmittanza dell'energia solare totale della superficie trasparente del serramento, i, (alcuni valori indicativi del coefficiente di trasmissione solare, gl, di alcuni tipi di vetri sono riportati nel Prospetto 13 : tali valori devono essere utilizzati solo quando non sono disponibili dati più precisi forniti dal costruttore);
- F_S è il fattore di riduzione dovuto all'ombreggiatura, equazione [19];
- 0,85 è il fattore di correzione che tiene conto dell'inclinazione dei raggi solari rispetto alla superficie verticale interessata;
- Qs,s è l'apporto di calore diretto dovuto alla radiazione solare che attraversa il vetro dello spazio soleggiato e penetra successivamente attraverso il vetro della finestra tra lo spazio climatizzato e quello soleggiato, espresso in kWh ,equazione [28].

3.2.7.4.1 Trasmittanza solare

Il valore di input e quello ritornato dal prospetto è da intendersi già comprensivo del fattore moltiplicativo per esposizione Fw =0.9 indicato nella UNITS 11300

ati generati di input Struttu	ra				
TRASMITTANZA TERMICA DI UNI10077-1	EI COMPONENTI EDILIZI FINEST	RATI			
1.1 - larghezza luidu romament	o [m]	U.8 0			
1.2- altezza lorda serramento	[m]	2.20			
Al- area del telaio (m²) 👘 0	44 Og= Area vetro:	32	-		
Ft= coefficiente di riduzione il	visto all'area del telaio	0.750			
g= trasmittanza solare dell'ele	mento	0.700			
Ec- coll, iduzione dovuto Tracmittanza di opergia colare tetale UNI 11200 (1 prospet					
Entroit termica del comp	Tusinitunza arenergia soure a		i hiosheriti 🔽		
Up = traunitumza termicu d					
Seminante SINGOLO	Lipo vetro		<u> </u>		
ri - parametra decimiento lu	Doppio vetro normale		0,85		
10 10Zal a	Doppio vetro con rivestimento basso-er	nissivo	0,67		
	Triplo vetro normale		0,70		
ei na d	Triplo vetro con doppio rivestimento ba	sso-emissivo	0,50		
tras donara linare d o vula	Doppia finestra		0,75		
Line transitionsa termina de					
Time di lapontallo Legno		ОК	Cancel		

3.2.7.4.2 Fattori riduzione tendaggi

Corrisponde al valore Fcp del dialogo input dati componenti finestrati E' da intendersi come relativo a schermature mobili permanenti, cioè integrate nell'involucro edilizio. Quindi da prendere in considerazione in una valutazione standard o di progetto.

Nota: il valore Fc viene invece usato solo nella parte estiva del programma (metodo TFM ASHRAE) e nel precedente metodo (UNI 832+10379)

55

ati generali di input Struttura								
TRASMITTANZA TERMICA DEI COMPONENTI EDILIZI FINESTRATI UNI10077-1								
L1- inginana inda ananata [a] 0.80								
L2= altezza lor	da serramento [m]							
Af= area del te	daio (m²) 0.44	Ag= Area	vetro:	1.32				
Ft= coefficient	te di riduzione dovuto all'a	area del telaio	0	750				
g= trasmittanza	a solare dell'elemento		0	.700				
Ec= coeff_ridu	zione dovuto a tendaggi	interni e/o ester	mi 0	.850				
l piseività l	alono dorato a tondaggi							
Fe	attori riduzione tenda U	NI 11300-1			×			
Servento	smi Sento Prospetto 14							
me	Posizione	erna	•					
he	Tipo di Tenda	Assorbimento	Trasmissione	Interna				
	Veneziane bianche	0,1	0,05	0,25				
1121	Veneziane bianche	0,1	0,1	0,30				
Love tracmi	Veneziane bianche	0,1	0,3	0,45				
Tipo di ta p	Tende bianche	0,1	0,5	0,65				
Dimension	Tende bianche	0,1	0,7	0,80				
	Tende bianche	0,1	0,9	0,95				
w t n	Tessuti colorati	0,3	0,1	0,42				
lice, corr = t	Tessuti colorati	0,3	0,3	0,57				
	Tessuti colorati	0,3	0,5	0,77				
Concerne d p	Tessuti rivestiti di alluminio	0,2	0,05	0,20				
trannittanzi					ʻ			
Dimensione			🗸 ОК 📃	🗙 Annulla				

3.2.7.4.3 Gestione schermature mobili

Il fattore di riduzione degli apporti solari relativo all'utilizzo di schermature mobili Fsh,gl è gestito automaticamente dal programma sulla base del prospetto 15, utilizzando i valori di trasmittanza solare e Fattore riduzione tende inseriti.

3.2.7.5 Apporti solari dovuti alle pareti opache esterne

Modalità operative:

- 1. α_i si imposta in archivio (caratteristiche struttura opaca)
- 2. Fh si imposta nell'archivio fattori schermature e dipende anche dalla variabile contesto

Riferimento 15833 E.5.2.9

Se durante la stagione invernale, in Lombardia, gli apporti solari sulle pareti opache esterne possono essere trascurati, in quanto rappresentano una piccola parte degli apporti solari totali e considerando che sono parzialmente compensati dalla dispersione per radiazione dell'edificio verso l'esterno, durante la stagione estiva è necessario provvedere alla loro quantificazione. Tali apporti rientrano nel calcolo del fabbisogno energetico per il raffrescamento dell'edificio, equazione [4], e sono definiti dalla seguente relazione:

$$\mathbf{Q}_{SE} = \mathbf{N} \cdot \sum_{j} \overline{\mathbf{H}}_{s,j} \cdot \left(\sum_{i} \alpha_{i} \cdot \mathbf{A}_{L,i} \cdot F_{h} \cdot F_{er,i} \cdot \frac{U_{i}}{\mathbf{h}_{e}} \right) \cdot 0.85$$
(20)

dove:

- Q_{SE} è la quantità di energia mensile assorbita dalle pareti opache esterne per effetto della radiazione solare, espressa in kWh.
- fattore di assorbimento solare medio della superficie assorbente della parete opaca, i, rivolta verso l'esterno (14.2 UNITS 11300-1);
- A_L è la superficie lorda della superficie della parete opaca rivolta verso l'esterno, espressa in m;
- U_i trasmittanza termica della parete opaca, rivolta verso l'estemo, espressa in W/m²k;
- h_e è il coefficiente di scambio termico superficiale esterno (secondo <u>UNI EN ISO 6946-A</u>)
- Fer =1 se si usa il metodo UNITS in quanto lo scambio termico per radiazione infrarossa verso la volta celeste viene valutato tramite un incremento dello scambio termico per trasmissione e non come una riduzione degli apporti di energia

Tipo di colorazione della parete	α
Chiaro	0,3
Medio	0,6
Scuro	0,9

3.2.7.5.1 UNI 6946 - A

Determinazione resistenza superficiale esterna Rse: nel dialogo Revisione - Impostazioni fabbisogno energia - Varie è disponibile la seguente opzione:

-Opzione L	INI 6946-A (Calcolo Rse)
• Valore	prospetto 1: Rse=0.04
C Calcol	o appendice A: Rse=1/(hr+hce)
TONEDSKI	

Impostandola su "Calcolo appendice A", il valore di Rse viene calcolato mensilmente in funzione della temperatura media mensile e della velocità del vento, la quale viene pesata per direzioni diverse da quella prevalente archiviata.

Ad es. supponendo una velocità media del vento di 2 m/s proveniente da Nord, il programma propone questo andamento tipico

56

In pratica vengono applicati dei fattori correttivi al valore in archivio in modo da avere "calma di vento" nelle direzioni opposte a quella prevalente.

Questo calcolo mensile del valore Rse, viene applicato:

- 1. al calcolo dell'area Asol equivalente per determinare l'apporto solare sui componenti opachi (UNITS 11300-5.3(14)
- 2. alla valutazione dell'extra flusso termico per radiazione infrarossa verso la volta celeste (UNITS 11300-11.4)

3.2.7.6 Apporti solari dovuti a spazi soleggiati

Modalità operative:

Definire una zona non riscaldata e impostare il nome della zona non riscaldata='Serra'

Limitazioni:

- 1. Deve essere l'ultima delle zone non riscaldate
- 2. E' possibile inserirne una sola

Riferimento 15833 E.5.2.9 sostanzialmente conforme con UNITS 11300-1

La procedura di seguito descritta viene applicata, per la sola stagione invernale, in caso di spazi soleggiati non riscaldati prossimi a spazi riscaldati (esempio verande e serre adiacenti) in cui è presente una parete divisoria tra it volume riscaldato e quello soleggiato.

Figura 7 — Spazio soleggiato contiguo a uno spazio riscaldato con indicati i coefficienti di dispersione termica e degli apporti

Se invece lo spazio soleggiato è climatizzato oppure è presente una apertura permanente fra lo spazio climatizzato e quello soleggiato, allora tutta questa volumetria deve essere considerata e conseguentemente trattata come spazio climatizzato.

3.2.8 Capacità termica

La capacità termica interna dell'edificio viene determinata con le seguenti 4 modalità:

- calcolo secondo la UNI EN ISO 13786:2008
- stima in base al prospetto 16 UNITS 11300-1 (per edifici esistenti)
- stima in base alla nota informativa UNI10344-B
- input

Le opzioni si impostano:

A) nel dialogo Impostazioni per calcolo fabbisogno energia - Capacità termica

🔲 Calcolo con strati liminari - UNI 13786							
Determinazione capacità termica medianti prospetto 16 - UNITS 11300-1							
Intonaci 💿 Gesso 🔿 Malta							
Isolamento C Assente/esterno							
Pareti esterne	Pareti esterne Qualsiasi 💌						
Pavimenti	Tessile						
Numeropiani 💽 1 💿 2 💿 3 e più							
Capacità termica areica	Capacità termica areica 75 [kJ/m²K]						

B) nel dialogo "Revisione - Capacità termica e massa" dell'archivio strutture

59

Jati generali di input Struttura						
MASSA E CAPACITA' TERMICA						
Massa termica frontale [kg/m²] 407.1	(senza int 366.1)					
Capacità termica frontale [kJ/m²K]	342.7					
TTCI [ore]	75.84					
TTCE [ore]	170.47					
 UNI13786 non applicabile Marcare la casella nel caso la struttura presenti uno strato non omogeneo (cioè le dimensioni della disomogeneità superano un quinto dello spessore dello strato) UNI10344-B UNI13786 						
VALORI EFFICACI calcolati secondo UNI10344-B						
Massa termica [kg/m²] 64.2	0.0					
Capacità termica [kJ/m²K] 17.6	0.0					
Dettaglio di calcolo:						
la parete presenta strati di isolamento concentral massa (a) = 64.150 kg/m²; massa (b) = massa primo strato = 780.000 kg/m³; lambda Spessore efficace termico d = 0.084 m Capacità termica massica materiale rivolto verso La parete presenta strati con R compresa tra (0.4 R resistenza termica dello strato resistivo = 0. C" capacità calcolata non considerando R =	i 65.532 kg/m² = 0.400 W/mK interno = 0.840 kJ/KgK l e 1) m²K/W ; caso [49] 741 m²K/W 53.886 kJ/m²K					

3.2.8.1 Calcolo UNI 13786

Se non è marcata la casella "Determinazione capacità termica mediante prospetto 16 UNITS 11300-1",

la capacità termica viene calcolata mediante la UNI 13786:2008.

Il calcolo dipende anche dall'opzione "Calcolo con strati liminari" (si rimanda all'appendice G della 13790:2008 sugli effetti di questa opzione).

Inoltre si rimanda alla UNI 13786 per le ipotesi di validità di questo metodo di calcolo.

In particolare si ricorda che vale solo per strati omogenei.

Nel caso sia presente uno strato non omogeneo, l'algoritmo di calcolo usato dal programma, ricava per quello strato una conducibilità (R/s).

Nel caso non si possa adottare questa approssimazione, effettuare le seguenti impostazioni nel dialogo "Capacità termica e massa" del menù Revisione nell'archivio strutture:

- 1. marcare la casella UNI 13786 non applicabile
- 2. selezionare il metodo UNI 10344 (NOTA INFORMATIVA APPENDICE B)
- 3. oppure inputare il valore ricavato per altra via

Il dettaglio di calcolo si può visualizzare dal Menù - Revisione - Comportamento dinamico dell'archivio strutture:

NI13786
Periodo di tempo 24
Con strati liminari (spuntato) 🗌 🗌
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
C1= 58.62 C2= 78.86
fattore decremento= 0.17 ritardo= -11.98

Le modifiche effettuate in questo dialogo non vengono salvate e non incidono sul calcolo energetico (servono solo per simulazione, premendo il pulsante calcola).

E' disponibile un rapporto di stampa sul comportamento dinamico di ogni struttura. A tal scopo selezionare la casella corrispondente nella composizione della relazione tecnica.

Sul sito <u>www.idronicaline.net</u> è disponibile un articolo che riporta due casi di test corrispondenti alle appendici della norma.

Sullla rivista AICARR - CDA n. 9/08 (pag. 68) è riassunto il metodo di calcolo.

3.2.8.2 Stima UNITS 11300-1

Le impostazioni si effettuano nel dialogo Impostazioni globali Nazionali e Regionali - Capacità termica. Il valore di capacità termica areica viene desunto dal prospetto 16 UNITS 11300-1.

3.2.9 Risultati relativi al fabbisogno energetico

Sono disponibili grafici dettagliati sui vari contributi mensili per:

- fabbisogno invernale
- fabbisogno estivo

Questi grafici comprensivi di tabelle riepilogative possono essere stampate selezionando nella composizione relazione tecnica la voce "Riepilogo energetico Qn,H e Qn,C"

3.2.9.1 Grafico fabbisogno invernale

Si attiva dal riepilogo energia cliccando sul riquadro Eh

3.2.9.2 Grafico fabbisogno estivo

Si attiva dal riepilogo energia cliccando sul riquadro Ec

3.3 Fabbisogno di Energia Primaria per la climatizzazione invernale

Il calcolo si attiva dalla videata principale - Menù Calcolo - Fabbisogno energia

Vedere anche schema allegato

Il programma applica quanto descritto nella UNITS 11300-2, La valutazione è eseguita in regime di funzionamento continuo. Lo schema di calcolo indicato nella figura sottostante (conforme alla EN 15316), permette di:

- accedere a tutti i dati necessari ai sottosistemi (cliccando sul titolo dei vari riquadri)
- visualizzare tutti i parziali di calcolo

Il calcolo del fabbisogno mensile di energia primaria si effettua partendo dal fabbisogno termico dell'involucro, sommando progressivamente le perdite dei vari sottosistemi al netto dei recuperi dell'energia elettrica.

Essendo il metodo basato su valori di rendimento precalcolati (ricavati da prospetti), non si considerano recuperi di energia (termica ed elettrica).

In pratica nello schema indicato in figura, i valori delle frazioni recuperate di energia elettrica degli ausiliari nei vari sottosistemi, sono nulli.

Si considera l'impianto per la climatizzazione invernale suddiviso nei seguenti sottosistemi:

- sottosistema di generazione
- sottosistema di accumulo, ove presente;
- sottosistema di distribuzione;
- sottosistema di emissione in ambiente e relativo controllo;
- recuperatore di calore ove presente;

3.3.1 Sottosistemi energetici

Le caratteristiche dei sottosistemi, sono selezionabili tramite le corrispondenti finestre di dialogo nelle quali vanno inseriti i dati relativi ai sottosistemi che costituiscono il sistema di climatizzazione invernale:

- 1. Recuperatore di calore;
- 2. Sottosistema di emissione;
- 3. Sottosistema di regolazione;
- 4. Sottosistema di distribuzione;
- 5. Sottosistema di accumulo;
- 6. Sottosistema di generazione.

NOTE:

- a) L'impostazione di impianto combinato o separato per la produzione di acs si effettua nel dialogo ACS
- b) L'impostazione del tipo *impianto di riscaldamento* si effettua nel dialogo del sottosistema di generazione.
- c) Nel calcolo basato su prospetti (versione Standard) non si considerano recuperi termici od elettrici. Quindi nell'equazione (1) della UNITS-11300-2 si considerano nulle le perdite recuperate dal sistema di produzione ACS
- d) Per alcuni sottosistemi energetici, può essere necessario calcolare preliminarmente la temperatura media dell'acqua nel generatore

3.3.1.1 Calcolo temperatura media dell'acqua nel generatore

Il calcolo preliminare della temperatura di mandata, di ritorno e media del generatore è alla base dei seguenti metodi di calcolo:

- 1. Calcolo analitico delle perdite di distribuzione
- 2. B.2 Metodo di calcolo delle perdite di generazione basato sulla Direttiva 92/42/CEE
- 3. B.3 Metodo di calcolo analitico delle perdite di generazione

Nel caso siano quindi impostati questi metodi , è necessario completare il seguente dialogo che si attiva nei corrispondenti sottosistemi energetici (generazione e /o distribuzione (riscaldamento/acs)).

Determinazione temperatura acqua nel generatore Modalkà di interfacciamento con il generatore Generatore collegato direttamente alla rete di distribuzione -Ricalcola -Modalità di distribuzione Circuito a portata variabile (ricircolo sull'unità terminale) Modalità di regolazione -Con valvole termostatiche (funzionamento a temperatura di mandata costante e portata variabile) Generazione Distribuzione Regolazione Temperatura di mandata (di progetto) θf,des ['C] 80.0 Energia termica fornita alle unità terminali Qd.out [kWh] [°C] 60.0 0 r.des Temperatura di ritorno (di progetto) ∆θdes [K] 50.00 Differenza temperatura (di progetto) RISULTATI: θa [°C] 20.0 Temperatura ambiente Temperatura media dell'acqua nelle unità terminali ["C] Te.m 53.0 Temperatura di set-point unità terminali θsp ["C] [°C] Temperatura di mandata Te,f [°C] 0 c ['C] 1.0 Temperatura di ritorno Te,r Banda proporzionale Fattore di carico unità terminali FCu.x [-] 70.00 Φem,des IkW1 Potenza di progetto unità terminali [kw] $\Phi_{em,out}$ Potenza media delle unità terminali $\left[\cdot\right]$ 1.30 Esponente della curva caratteristica dei n terminali di erogazione V'dem [kg/h] Portata attraverso le unità terminal Mese 2 4 5 8 9 10 11 12 Qd,out 35227 26502 17844 3350 0 0 0 0 5049 21903 32574 Pem.out 43.78 47.35 39.44 23.98 9.31 0.00 0.00 0.00 0.00 0.00 12.38 30.42 FCux 0.676 0.563 0.343 0.133 0.000 0.000 0.000 0.000 0.000 0.177 0.435 0.625 Te,f 53.0 53.0 53.0 53.0 0.0 0.0 0.0 0.0 0.0 53.0 53.0 53.0 Te,r 61.0 51.3 30.9 8.2 0.0 0.0 0.0 0.0 0.0 13.4 39.7 56.7 57.0 52.2 30.6 0.0 0.0 0.0 0.0 0.0 33.2 46.3 Te,m 41.9 54.8

Questi sono i riferimenti normativi:

20145

932

179

0

0

0

0

0

269

1963

0

- appendice A.3 UNITS11300-2
- UNI EN 15316-2-3

0

3.3.1.2 Recuperatore di calore

V'd

Nello schema sono indicati

$$R_{\rm RCV} = Q_{\rm V} \cdot \eta_{\rm RCV}$$

(47)

dove:

- Qv la quantita totale di energia trasferita per ventilazione, tra l'ambiente climatizzato e l'ambiente circostante, espressa in kWh;
- η_{RCV} è l'efficienza del recuperatore di calore (pari a 0 se assente).

Il fabbisogno termico per il riscaldamento dell'involucro corretto per tener conto del contributo di un eventuale recuperatore di calore è dato dalla formula:

$$Q_{NH,r} = Q_{NH} - (Q_V \cdot \eta_{RCV})$$

(48)

(49)

dove:

- QNH,r e it fabbisogno termico per il riscaldamento dell'involucro corretto per tener conto del contributo di un eventuale recuperatore di calore, espresso in kWh deve assumere un valore sempre positivo;
- QNH è il fabbisogno termico per il riscaldamento dell'involucro, definito dall'equazione [3], espresso in kWh;
- Qv è la quantità totale di energia trasferita per ventilazione, tra l'ambiente climatizzato e l'ambiente circostante, espressa in kWh;
- η_{RCV} è l'efficienza del recuperatore di calore (pari a 0 se assente).

Il fabbisogno di energia elettrica mensile del recuperatore di calore, WRCV, è dato dalla relazione:

$$W_{\rm RCV} = \sum_{i} \dot{W}_{\rm RCV} \cdot \mathbf{h}_{\rm RCV} \cdot \mathbf{N}$$

dove:

indica la potenza elettrica nominale del recuperatore di calore, espressa in kW;

hRCV è il periodo di funzionamento giornaliero dell'impianto di ventilazione meccanica, espresso in h;

N è il numero dei giorni del mese.

Cliccando nel riquadro RECUPERATORE si accede al dialogo per impostare i dati:

٢			٥
	Recuperatore di calore		
	Efficienza recuperatatore di calore	η sca	0.70
	Ore di funzionamento medie giornaliere (h)	h _{RCV}	24
	Potenza ausiliari (kW)	N _{RCV}	0.260

3.3.1.3 Sottosistema di emissione-regolazione

La simbologia dello schema è riferita alla (46)-15883 ed è conforme alla formula 2 UNITS 11300-2 con le seguenti avvertenze:

- Il termine Q_{DH,out} corrisponde all'energia termica utile effettiva, che deve essere fornita dal sottosistema di distribuzione (= Qhr)
- k_{eH}·W_{eH} = Q_{aux,e,Irh} (Nel calcolo STANDARD basato su prospetti non si considerano recuperi termici od elettrici: k_{eH}=0)

Cliccando nel riquadro EMISSIONE-REGOLAZIONE si accede al dialogo per impostare i dati:

- emissione
- regolazione

Le perdite del sottosistema di emissione-regolazione sono date dalla:

$$Q_{\rm L,eH} = \left(\frac{1}{\eta_{\rm eH}} - 1\right) \cdot Q_{\rm NH,r}$$
(50)
(11,12 UNITS-11300-2)

dove:

QL,eH è la perdita del sistema di emissione-regolazione, espressa in kWh;

- QNH,r è il fabbisogno energetico per il riscaldamento dell'involucro, definito dall'equazione [48], espresso in kWh.
- η_{eH} è il rendimento del sistema di emissione-regolazione.

Il rendimento di emissione-regolazione, η_{eH} , è funzione del rendimento dei terminali di erogazione del calore, η_{eeH} , e del sistema di controllo, η_{cH} , secondo la:

$$\eta_{eH} = \eta_{eeH} \cdot \eta_{cH}$$

dove:

 η_{eeH} è il rendimento dei terminali di erogazione del calore;

 η_{cH} è il rendimento del sistema di controllo.

3.3.1.3.1 Sottosistema di emissione

Sottosistema emissione Sottosistema regolazione									
Terminali emissione									
	Radiatori su parete esterna isolata C P	annelli isolato annegato a pavimento							
	C Radiatori su parete interna C P	annelli annegati a pavimento							
	C Ventilconvettori C P	annelli annegati a soffitto							
	C Termoconvettori C P	annelli a parete							
	C Bocchette in sistemi ad aria calda								
	Parete riflettente								
	Tipo di funzionamento	Carico termico [k//m²] 2.9							
	Sistema con funzionamento continuo	Bendimento di emissione 0.95							
	Sistema asservito alla produzione di calore	valore di input 0.950							
	Potenza elettrica ausiliari (kW) 0.000								

Terminali di emissione:

Le scelte proposte dal programma dipendono dall'altezza netta del locale (superiore o inferiore a 4 metri),

come indicato nei Prospetti 17 e 18 della UNI -TS 11300-2 Questo valore si imposta in Meù Opzioni - Impostazioni S, V, Su, h globali.

Da notare che il rendimento di emissione precalcolato dipende dal carico termico medio che viene ottenuto dividendo il fabbisogno di energia termica utile per la durata convenzionale del periodo di riscaldamento e per il volume lordo riscaldato.

Inoltre nel caso di locali di altezza minore di 4 m. è possibile applicare delle correzioni nei seguenti casi:

- Parete riflettente (+0.01)
- Parete esterna non isolata U > 0.8 W/m²K (-0.04)
- Temperatura di madata <= 65°C (+0.03)

Nel caso in cui nell'edificio ci siano diverse tipologie di terminali di erogazione occorre determinare il rendimento di emissione degli emettitori facendo una media dei rendimenti dei differenti sistemi pesata sul volume riscaldato da ognuno, secondo la:

$$\eta_{\text{eeH}} = \frac{\sum_{i} \eta_{\text{eeH},i} V_{i}}{V}$$

(52)

dove:

- η_{eeH} è il rendimento di emissione dei terminali di erogazione dell'edificio;
- neeH,i è il rendimento di emissione dei terminali di erogazione di tipologia i;
- Vi è il volume netto riscaldato tramite i terminali di erogazione dell'edificio di tipologia i;
- V è il volume netto riscaldato dell'edificio.

Tipo di funzionamento: La scelta influenza il numero di ore di funzionamento degli ausiliari elettrici (Formule 53 e 54)

- 1. Sistema con funzionamento continuo: verranno usate 24 ore
- Sistema asservito alla produzione di calore: nel caso di generatore a combustione di biomassa, pompa di calore o l'edificio sia riscaldato tramite riscaldamento, verrà usato il valore del fattore di occupazione Foc, definito dal prospetto X; altrimenti verrà usato ton

(Se si usano i rendimenti di generazione precalcolati in base a prospetti, verrà usato il funzionamento continuo)

Potenza degli ausiliari: è la potenza elettrica assorbita da ventilatori, valvole e sistemi di regolazione

Nel caso in cui non siano disponibili i dati di progetto dei componenti dell'impianto, la potenza dei ventilconvettori è desumibile dal Prospetto seguente

Portata d'aria dei ventilconvettori	Potenza elettrica [W]
Fino a 200 m ³ /h	40
Da 200 a 400 m³/h	50
Da 400 a 600 m³/h	60
Tehhioanni alattrici dei terminali di aranaziana dal cale	va /Fanta: Camitata tarmataaniaa

Fabbisogni elettrici dei terminali di erogazione del calore (Fonte: Comitato termotecnico Italiano, "Prestazioni energetiche degli edifici. Climatizzazione e preparazione acqua calda per usi igienico - sanitari", 2007)

3.3.1.3.2 Sottosistema di regolazione

		的机物组织的加强的自然和构成和构成相关							
Sottosistema emissione	Sottosistema regolazione								
Tipo di Regolazion	Tipo di Regolazione								
📿 Regolazione m	C Regolazione manuale								
🖸 Climatica centr	ralizzata								
📿 Singolo ambier	nte								
💿 Climatico e sin	golo ambiente								
🔘 Solo zona									
🔿 Climatico e zor	C Climatico e zona								
Caratteristiche									
💿 On-off									
○ PL o PID	○ PL o PID								
○ P banda prop. 0.5°C									
🔘 P banda prop.	1°C								
📿 P banda prop.	2°C								
Rendimento di regolazione 0.970									
Valori di input	0.000								

Marcare la casella Valore di input per inserire un valore di rendimento diverso da quelli del prospetto 20 - UNITS 11300-2,

dal quale vengono recuperati i valori.

Nota: in questa versione nel caso di Regolazione Solo Climatica, viene usata la seguente semplificazione:

i valori del rendimento non dipendono dal rapporto apporti/perdite e dal fattore utilizzo degli apporti; vengono usati i seguenti valori convenzionali, tratti dalla Delibera 15833 Lombardia:

- Radiatori e convettori: 0.88
- Pannelli radianti isolati: 0.86
- Pannelli radianti integrati: 0.82

3.3.1.4 Sottosistema di distribuzione

La simbologia dello schema è riferita alla (46)-15883 ed è conforme alla formula 2 UNITS 11300-2.

Le perdite termiche del sottosistema di distribuzione sono date dalla:

$$Q_{\text{L,dH}} = \left(\frac{1}{\eta_{\text{dH}}} - 1\right) \cdot Q_{\text{dH,out}}$$
(56)
(13 UNITS11300-2)
con:
$$Q_{\text{dH,out}} = Q_{\text{NH,r}} + Q_{\text{L,eH}} - k_{\text{eH}} \cdot W_{\text{eH}}$$
(57)

dove:

QdH,out è l'energia termica richiesta al sistema di distribuzione, espressa in kWh;

- QNH,r è il fabbisogno energetico per il riscaldamento dell'involucro, definito dall'equazione [48], espresso in kWh.
- QL,eH è la perdita termica del sistema di emissione, espressa in kWh;
- keH è la frazione recuperata dell'energia elettrica assorbita dagli ausiliari del sistema di emissione; (uguale a zero nel caso di valutazione Standard in base a prospetti precalcolati)
- W_{e,H} è il fabbisogno di energia elettrica degli ausiliari del sistema di emissione, espresso in kWh;

ndH è il rendimento del sistema di distribuzione.

Cliccando nel riquadro DISTRIBUZIONE si accede al dialogo per impostare i dati:

sistema di distribuzione 🛛 👔 👔						
- Tipo Impianto:						
 Centralizzato 	O Autonomo					
Tipo Distribuzione:						
Verticale. Montanti in traccia nei para 10/91. Periodo di costruzione: dopo	amenti interni. Isolamento secondo legge il 1993					
O Verticale. Montanti in traccia nei para leggero. Periodo di costruzione: 1993	amenti interni o nelle intercapedini. Isolamer 3-1977					
O Verticale. Montanti correnti nelle inte costruzione: prima del 1976	rcapedini. Senza isolamento. Periodo di					
⊙ Orizzontale						
Numero di Piani	5epiù 💌					
Anno di installazione:	(Medio) 1961-1976 🗨					
Correzione per radiatori a temp. 70/55	[1-(1-n)x0.85]					
Rendimento Distribuzione	0.969					
Valore di input 🔽	0.900					
- Tipo di funzionamento						
⊙ Sistema con funzionamento continuo						
O Sistema asservito alla produzione di calore						
Potenza Ausiliari (kW)	0.000					

Le opzioni indicate determinano il rendimento di distribuzione sulla base dei prospetti 21a..e.

I rendimenti precalcolati dei prospetti si riferiscono a distribuzione con temperatura variabile (M/R 80/60 °C).

Per temperature di progetto differenti il rendimento viene corretto come segue:

Tipologia di terminale	ηd corretto
Impianto a radiatori (70/55)	1-(1-ηdH)*0,85
Impianto a ventilconvettori	1-(1-ηdH)*0,60
Impianto a pannelli	1-(1-ηdH)*0,25

Nel caso di radiatori, per applicare il fattore correttivo è necessario spuntare la corrispondente casella (invece nel caso di ventilconvettori o pannelli, l'applicazione è automatica).

Tipo di funzionamento:

La scelta influenza il numero di ore di funzionamento degli ausiliari elettrici (Formule 58 e 59)

- 1. Sistema con funzionamento continuo: verranno usate 24 ore
- Sistema asservito alla produzione di calore: nel caso di generatore a combustione di biomassa, pompa di calore o l'edificio sia riscaldato tramite riscaldamento, verrà usato il valore del fattore di occupazione Foc, definito dal prospetto X; altrimenti verrà usato ton

© 2009 Watts Industries Italia s.r.l.

Potenza degli ausiliari: Ad esempio è la potenza elettrica assorbita dalle pompe di circolazione e dalle valvole

Conferma Annu	fla												
- Primario	Edificio	Distrib	uzione										
i l		Image: Image: Figure 1 and											
	Descri	Descrizione:											
	Nr	ι	L Leq au% Ta Tipo Tubazione				Ui	di					
	01 10	0.00	0.50	0	20.0	isolata corrente in aria			0.2	46	0.020		
	02 1	5.00	0.00	0	20.0	singola inc	cassata r	ella mur	atura		0.4	83	0.020
	Poten	za elettri	ca pomp	a ricircol	o [k₩]		0.50			ī			
	Poten Poten	za elettric za elettric	ca pomp ca altre :	a ricircol pompe ()	o [kW]		0.50	F	v [-]	1	Funzion	amento	contin
	Poten: Poten: Mese	za elettric za elettric	ca pomp ca altre 2	a ricircol pompe (k 3	o [kW] :W] 4	5	0.50 0.00	F-	r [-] 0.00	a 	Funzion	amento	contin
	Poten: Poten: Mese Tw.avg	za elettric za elettric 1 50.0	ca pomp ca altre 2 48.4	a ricircol pompe (k 3 45.3	o [kW] (W] 4 39.7	5	0.50 0.00 6 0.0	F	v [-] 0.00 8 0.0]]	Funzion	amento 11 46.3	contin 12 47.3
	Poten: Poten: Mese Tw.avg Qd.1	za elettrio 1 50.0 149	ca pomp ca altre 2 48.4 141	a ricircol pompe (k 45.3 125	o [kW] :W] 4 39.7 5 98	5 0.0	0.50 0.00 6 -99	F	v [-] 0.00 8 99	9 0.0 -99	Funzion 10 43.6 117	amento 11 46.3 130	contin 12 47.1

3.3.1.4.1 Calcolo mediante appendice A

La videata permette di inserire i dati per il calcolo delle perdite di distribuzione e dei corrispondenti recuperi, con il metodo di calcolo descritto nella UNITS 11300-2 A.4.

La riga Qd,I corrisponde alla formula (A.11) La riga Qd,Irh corrisponde alla (A.12)

Per ogni riga:

- L [m]: lunghezza degli elementi della rete di distribuzione
- Leq [m]: eventuale lunghezza equivalente (vedi ad es. A.5.7 Ponti termici e singolarità)
- au%: aumento percentuale della lunghezza L (A.5.7)
- Ta [°C]: temperatura ambiente (vedi A.3.3)
- Tipo tubazione: selezionare l'icona 🔊 per impostare i vari calcoli A.5
- Ui [W/mK]: trasmittanza lineica degli elementi della rete di distribuzione
- di [m]: diametro esterno della tubazione

Temperatura media del fluido nel circuito:

• se è marcata la casella allora viene usato il valore di input

```
T 🔽 Input temperatura media del fluido θ<sub>wavg</sub>[*C] 45
```

• altrimenti premere l'icona "T" per accedere al dialogo di gestione temperature

Modalità operative:

• usare le icone 💶 📰 per aggiungere, cancellare o inserire una riga

Nota:

il riquadro sinistro della videata e la scheda edificio sono disattivati (viene indicato solo "primario"); in una prossima versione verranno gestiti anche circuiti secondari e più colonne di distribuzione.

Ausiliari elettrici:

• Le potenze elettriche inserite concorrono alla determinazione del fabbisogno di energia elettrica Qux.

(corrispondono a Wpo,d della formula (21))

• il coefficiente Fv è un fattore che tiene conto della variazione di velocità della pompa (prospetto 26)

3.3.1.5 Sottosistema di accumulo

La simbologia dello schema è riferita alla (46)-15883

Qualora sia presente un sistema di accumulo è necessario calcolarne la perdita come:

$$Q_{L,sH} = \mathbf{f}'_{s} \cdot \mathbf{t} \cdot N \cdot 10^{-3}$$
(61)

dove:

- f's è il coefficiente di perdita in funzione della classe di volume dell'accumulo, espresso in W; corrisponde al termine $(Ss/ds) \cdot (\theta s \theta a) \cdot \lambda s$ della 31-UNITS 11300-2 oppure al termine $k_{boll} \cdot (\theta s \theta a)$ della 32-UNITS 11300-2
- t indica le ore di funzionamento dell'impianto di climatizzazione nel mese (pari alle 24 ore di funzionamento giornaliero per il numero di giorni nel mese), espresso in h;

In mancanza di dati, nel prospetto seguente vengono riportati alcuni valori desunti da (Fonte: Comitato Termotecnico Italiano, "Prestazioni energetiche degli edifici.Climatizzazione invernale e preparazione acqua calda per usi igienico-sanitari", 2003) usati dalla 15833 - Lombardia

Volume di accumulo	f' _s [W]
da 10 fino a 50 litri	30
da 50 a 200 litri	60
200 a 1500 litri	120
da 1500 a 10000 litri	500
oltre i 10000	900

Inoltre è:
$$Q_{sH,out} = Q_{dH,out} + Q_{L,dH} - k_{dH} \cdot W_{dH}$$
(62)

dove:

QsH,out	è l'energia termica richiesta al sistema di accumulo, espressa in kWh;
QdH,out	è l'energia termica richiesta al sistema di distribuzione, espressa in kWh;
QL,dH	è la perdita termica del sistema di distribuzione, espressa in kWh;
Wd,H	è il fabbisogno di energia elettrica degli ausiliari del sistema di distribuzione, espresso in
	kWh;
kdн	è la frazione recuperata dell'energia elettrica assorbita dagli ausiliari del sistema di
	distribuzione.
	(uguale a zero nel caso di valutazione Standard in base a prospetti precalcolati)

Dat sottosistema di accumulo 🔽 Sistema di accumulo presente Coefficiente di perdita [W] 60 🔘 da 10 fino a 50 litri . Valore di input 0.0 💿 da 50 a 200 litri Tipo di funzionamento 🔘 da 200 a 1500 litri 🙆 Sistema senza resistenza di backup 🔘 da 1500 a 10000 litri C Sistema con resistenza di backup. 🔘 oltre i 10000 litri Potenza ausiliari [kW] 0.000

Cliccando nel riquadro ACCUMULO si accede al dialogo per impostare i dati

• potenza degli ausiliari: (NOTA CENED) nel caso in cui il sistema di accumulo non sia dotato di una resistenza elettrica per il mantenimento del livello termico ma esclusivamente di una resistenza elettrica che garantisce la compensazione delle perdite, il campo relativo alla potenza degli ausiliari deve essere assunta pari a zero.

tipo di funzionamento (opzione non attiva nel calcolo Standard in base a prospetti):

- sistema senza resistenza di back up (fabbisogno di energia elettrica trascurabile);
- sistema con resistenza di back up (una resistenza elettrica che garantisce la compensazione delle perdite);

3.3.1.6 Sottosistema di generazione

74

La simbologia dello schema è riferita alla (46)-15883, ed è conforme alla (15) della UNITS 11300-2

- E' possibile impostare tre metodi di calcolo (tramite il menù a discesa del blocco generazione):
- 1. Metodo da prospetti: rendimenti di generazione precalcolati o pompe di calore, teleriscaldamento,
- biomassa 2. Dati dichiarati B2: basato sulla Direttiva 92/42/CEE
- 3. Calcolo analitico B3:

Cliccando nel riquadro GENERAZIONE si accede al corrispondente dialogo per impostare i dati:

Nel caso si selezioni Metodo da prospetti:

ipologia impianto generazione 🛛 🛛 🏾 🏾 🏾 🏾 🖓	eneratore multistadio e m	odulante	•	
Potenza termica nominale utile (kW)	Pn	30.0		
Potenza elettrica nominale: dei	bruciatori (kW) 🛛 👾 br	0.000	delle pompe (kW) 👾af	0.030
	ipologia impianto generazione Gr Potenza termica nominale utile (kW) Potenza elettrica nominale: dei	ipologia impianto generazione Generatore multistadio e m Potenza termica nominale utile [kW] Pn Potenza elettrica nominale: dei bruciatori [kW] Ŵbr	ipologia impianto generazione Generatore multistadio e modulante Potenza termica nominale utile [kW] Pn 30.0 Potenza elettrica nominale: dei bruciatori [kW] ŵbr 0.000	ipologia impianto generazione Generatore multistadio e modulante Potenza termica nominale utile [kW] Pn 30.0 Potenza elettrica nominale: dei bruciatori [kW] Ŵbr 0.000delle pompe [kW] Ŵaf

La parte superiore del dialogo contiene i dati comuni a tutte le tipologie di impianto:

- Pn
- Potenza ausiliari (ove presenti)

E' possibile impostare le seguenti tipologie di impianto di generazione:

- 1. Generatore UNITS 11300-2
- 2. Pompa di calore
- 3. Teleriscaldamento
- 4. Biomassa

© 2009 Watts Industries Italia s.r.l.

3.3.1.6.1 Rendimenti di generazione precalcolati

Rendimenti generazione precalcolati UNITS 11300-2 Vettore energetico										
Tipo di generatore (Prospetti 23 e 24):										
23c. Generatori di calore a gas o gasolio, bruciatore ad aria soffiata o premiscelati, modulanti, classificati (2 stelle) 💌										
F1 rapporto fra potenza del generatore installato e la potenza di progetto richiesta;										
F2: installazione all'esterno;										
☐ F3: camino di altezza maggiore di 10 m;										
✓ F4: temperatura media di caldaia maggiore di 65 °C in condizioni di progetto;										
✓ F5: generatore monostadio;										
F6: camino di altezza maggiore di 10 m in assenza di chiusura dell'aria comburente all'arresto;										
40.00 F7 temperatura di ritorno in caldaia nel mese più freddo;										
DeltaT Fumi - Acqua ritorno a Pn										
C <12°C C 1224°C C >24°C										
Rendimento di generazione 0.86										
Valore Input 0.00										

Questo dialogo permette di selezionare i rendimenti di generazione precalcolati, in base ai prospetti 23 e 24 della UNITS 11300-2.

In pratica viene recuperato un valore base al quale vengono poi applicati dei fattori correttivi sulla base dei vari parametri F1..F7.

Le tipologie di generatore sono le seguenti:

- 1. 23a. Generatori di calore atmosferici tipo B antecedenti al 1996
- 2. 23a. Generatori di calore atmosferici tipo B classificati (1 stella)
- 3. 23a. Generatori di calore atmosferici tipo B classificati (2 stelle)
- 4. 23b. Generatori di calore a camera stagna tipo C per impianti autonomi classificati (3 stelle)
- 5. 23c. Generatori di calore a gas o gasolio, bruciatore ad aria soffiata o premiscelati, modulanti, antecedenti al 1996
- 6. 23c. Generatori di calore a gas o gasolio, bruciatore ad aria soffiata o premiscelati, modulanti, classificati (1 stella)
- 7. 23c. Generatori di calore a gas o gasolio, bruciatore ad aria soffiata o premiscelati, modulanti, classificati (2 stelle)
- 8. 23d. Generatori di calore a gas a condensazione (4 stelle)
- 9. 23d. Generatori di calore a gas a condensazione con accumulo in esterno (4 stelle)
- 10.23e. Generatori di aria calda a gas o gasolio, bruciatore ad aria soffiata o premiscelato, funzionamento on-off
- 11.24a. Generatori di aria calda a gas a camera stagna con ventilatore nel circuito di combustione di tipo B o C, funzionamento on-off
- 12.24b. Generatori di aria calda a gas o gasolio, bruciatore ad aria soffiata o premiscelato, funzionamento bistadio o modulante
- 13.24b. Generatori di aria calda a camera stagna con ventilatore nel circuito di combustione installato in versione di tipo B o C, bistadio o modulazione aria gas
- 14.24c. Generatori di aria calda a gas a condensazione regolazione modulante aria gas

NOTA:

Si rimanda al paragrafo 6.6.5.1 della UNITS 11300-2 per le condizioni di validità dei prospetti.

3.3.1.6.2 Calcolo mediante appendice B

I metodi di calcolo B2 e B3 sono descritti nell'appendice B della UNITS 11300-2

- B.2 Metodo di calcolo delle perdite di generazione basato sulla Direttiva 92/42/CEE
- B.3 Metodo analitico di calcolo delle perdite di generazione

3.3.1.6.2.1 Metodo di calcolo delle perdite di generazione basato sulla Direttiva 92/42/CEE

			Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Die	
mperatura media	0 e.avg	["C]	\$0.0	48.4	45.3	39.7	0.0	0.0	0.0	0.0	0.0	43.6	46.3	47.2	TempMe
mperatura di ritorno	θe,r	["C]	47.1	43.8	37.6	26.4	0.0	0.0	0.0	0.0	0.0	34.1	39.5	41.5	(C.
tenza termica utile nomi	inale								4	Pn	D	wal		70.00	
tenza termica intermedi	a								4	Pint	p	w		21.00	
Rendimenti, potenza au	siliari Altri dati														12
Rendmento a pieno o	arico		₩ vi	alore di	chiarato		Param	etri per	la deterr	ninazio	ne dei r	endime	nti minir	ni (Pr B.7)	
			η	gn,Pn	[3	6]				A			6	8	
			Γ		96.00	1		Г		91.00	ſ		1.00	Ĵ	
															-
Rendimento al 30% de		🔽 valore dichiarato 🛛 Parametri p						er la determinazione dei rendimenti minimi (Pr B.7)							
			η gn.Pint (%)					_	<u>P</u>				2		
			1		106.00			1		97.00	1		1.00	2	
			120					- 23	Paramet	ri per c	alcolo p	otenza	ausiliar	(Pr 8.4)	-
			V V8	alori dic	hiarati			_		G		н		n	
Potenza elettrica degl	i ausiliari a pieno	carico	W aux	,Pn	[W]		210.	00	ΦPn	0.	000	45.	000	0.480	
Potenza elettrica degl	i ausiliari a carico	interme	waux.	Pint	[11]		60.	00	ΦPin	0	000	15.	000	0.480	
Potenza elettrica degl	i ausiliari a carico	nullo	Waux,	Po	[W]		10.	00	ФР0	15	000	0.	000	0.000	
Perdite a carico nullo			1227												
			I Va	alore di	chiarato		Param	etn per	la deterr	mnazio	ne perd	ite a ca	nco nul	ID (PT 8.6)	
			9	PPo	[W]	23			-		E	<u> </u>		F	

Nota: è necessario calcolare preliminarmente la <u>temperatura media dell'acqua nel generatore</u> (pulsante "TempMedia")

3.3.1.6.2.2 Metodo di calcolo analitico delle perdite di generazione

l

TempMedia			Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
emperatura media	θ gn.w.avg	[°C]	53.5	51.9	48.8	43.2	0.0	0.0	0.0	0.0	0.0	47.1	48.9	50.7
emperatura di ritorno	θe,r	["C]	47.1	43.8	37.6	26.4	0.0	0.0	0.0	0.0	0.0	34.1	37.7	41.5
otenza termica del focolar	е								4	ÞPcn	p	w] [74.00
otenza termica di riferimen	ito								4	₽Pref	D	kw] [74.00
A Guida Premere necessar	il pulsante per a i, anche sulla ba	ltivare u se di va	na seg Iori di d	uenza efault r	guidata icavati o	per inse dai pros	nire i va petti no	lori mativi		Ger	neratore	a con	densazio	one 🔽
² erdite Ausiliari Pe	r generatori a	conde	ensazi	one	Multis	adio /	Modu	lanti /	Modul	ine				
^o erdite al camino a brucia	tore acceso a pi	eno cari	c0	mis	urate			•	F	^v ch,on		[%]		10.00
sponente del fattore FC (B.28)								r	n i		[•]		0.10
Perdite al mantello in cond	izioni di prova				Valore o	fichiara)	to 3.45	a۲	P 88	^y gn.em	([%]		1.8
attore di riduzione delle p	var erdite in accord	on derau o con l'u	licazio	ne del	generat	ore	0.40	69	6.00 k	gnenv		•		0.70
sponente del fattore FC (B.29)								n	n	i	0		0.19
erdite al camino a brucia	tore spento in co	ondizioni	di prov	a E	Valore	dichiar	ato		F	°ch.off		[%]		1.60
sponente del fattore FC (B.31)								F			[•]		0.15
	neratore in cond	fizioni di	prova						θ	gn,w,te	st	["C]		70.00
emperatura media nel ge									Θ	a,test	1	[°C]		20.0
emperatura media nel ge emperatura ambiente in d	condizioni di pro	va 🛛												
emperatura media nel ge emperatura ambiente in o emperatura dell'ambiente	condizioni di pro- di installazione	va del gene	eratore		All'est	erno			θ	a,gn	i	[°C]		15.0

Nota: è necessario calcolare preliminarmente la <u>temperatura media dell'acqua nel generatore</u> (pulsante "TempMedia")

Premere il pulsante "Guida" per attivare una sequenza guidata per inserire i valori necessari, anche sulla base di valori di default ricavati dai prospetti normativi.

Ad es. la seguente figura si riferisce alla prima videata delle sequenza:

3.3.1.6.3 Pompa di calore

Pompa	a di calore
	Energia utilizzata O chimica di combustione I elettrica assorbita dal motore
	Sorgente esterna dalla quale si preleva l'energia all'evaporatore I temperatura esterna costante (terra-acqua; acqua-acqua) I temperatura esterna variabile (aria-acqua; aria-aria)
	Coefficiente di effetto utile alla temperatura di riferimento COP(9-r) 1.112 Temperatura di riferimento della sorgente fredda [°C] 9r 0.0

Il calcolo delle perdite viene eseguito in conformità alla (97)-15833

78

$$Q_{L,gH} = \frac{Q_{gh,out}}{COP} - Q_{gh,out}$$
(97)

Nel caso di pompa di calore tale valore è negativo (se COP>1 ... cioè se l'energia utilizzata è "chimica di combustione")

Riferimenti: • 15833 - E.6.2.4.3

• UNI10348 - 7.2

3.3.1.6.4 Teleriscaldamento

Teleriscaldamento	
Rendimento termico di produzione medio mensile	η _{дн} 1.00

Le perdite vengono calcolate con la formula (98)-15833

$$Q_{L,gH} = \left(\frac{1}{\eta_{gH}} - 1\right) \cdot Q_{gH,out}$$
(98)

3.3.1.6.5 Generatore a combustione di biomassa

Bio	naan kana kana kana kana kana kana kana
	endimento termico di produzione medio mensile ŊgH 0.45 valore PXXXVI I Sistema di riscaldamento P.XXXVI Riscaldamento a legna e cippato I

Le perdite vengono calcolate con la formula (98)-15833

$$Q_{L,gH} = \left(\frac{1}{\eta_{gH}} - 1\right) \cdot Q_{gH,out}$$
(98)

3.3.1.6.6 Vettore energetico

80

In questa sezione è necessario impostare il Tipo di combustibile.

Combustione Funzionamento a condensazione	Vettore energetico				
Tipologia combustibile (P.XXXV)					
 Gas naturale 					
C GPL		PCI	rchivio Potere [kcal/kg]	e Calorifico 8250	
C Gasolio					
C Olio combustibile					
C Biomasse - pellet					

Il PCI potere calorifico inferiore, agganciato in automatico si può personalizzare <u>nell'Archivio Potere</u> <u>Calorifico</u>.

Questo dato viene usato per il calcolo del Fabbisogno di combustibile (Paragrafo 6.c.6 della relazione tecnica)

3.3.1.6.6.1 Archivio Potere Calorifico

Questi sono i valori forniti di default:

Archivio combustibili

nr	descrizione	potere calorifico		
1	Gas naturale	8250	kcal/m³	<u>M</u> odifica
2	GPL	11000	kcal/kg	
3	Gasolio	10200	kcal/kg	
4	Olio combustibile	9800	kcal/kg	
5	Carbone	7700	kcal/kg	
6	Biomasse - pellet	4200	kcal/kg	Y Cancel
7	RSU	2000	kcal/kg	

Per il valore del carbone è stato preso come riferimento: - Manuale di Riscaldamento di C.Rumor - G. Strohmenger ed. Hoepli 1990

Per il valore dei Rifiuti Solidi Urbani: - FONTE ENEA Centro ricerche CASACCIA Il Potere calorifico indicato è riferito alla seguente composizione media:

- · materiali organici: 43%;
- materiali cellulosici: 22%;
- · materie plastiche: 7%;
- · inerti: 7%;
- metalli: 3%;
- · materiale composto (sottovaglio): 18%,

con un'umidità media del 40 - 45%.

Gli altri valori sono stati tratti dal prospetto XXXV della 15833.

3.3.1.7 Fonte rinnovabile

Il Blocco "Fonte rinnovabile" è da intendersi come generatore di integrazione generico allo scopo di soddisfare il caso di impianti alimentati anche da fonti rinnovabili.

A questo tipo di impianto si attribuisce la priorità per soddisfare il fabbisogno di energia termica utile dell' impianto

- 1. Q''GH,out = QGW,out + Q'GH,out
- 2. Q'GH,out = QGH,out QiH,out
- 3. Notare anche in QEH,in la sommatoria di tutti WxH, in quanto è stato aggiunto l'eventuale WiH
- 4. L'attivazione e la disattivazione della fonte rinnovabile si esegue nel dialogo che si attiva con click nel riquadro "FONTE RINNOVABILE"

		1001010100	30									
Descriptione : S	Solare termic	:0										
Nota: i valori inc	ficali con " :	sono editabili										
QGH,out	1299.1	736.3	121.1	0.1	0.0	0.0	0.0	0.0	0.0	0.3	559.1	1126.9
%	+ 9.1	+ 23.9	+ 100.0	+ 100.0	+ 0.0	+ 0.0	+ 0.0	+ 0.0	+ 0.0	+ 100.0	+ 25.2	+ 10.4
Qout,x	118.3	175.7	121.1	0.1	0.0	0.0	0.0	0.0	0.0	0.3	140.7	117.1
" QLx	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
"Olthus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
"W'aux [kW]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
* kaux	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.60	0.80	0.80	0.80
Qaux, lith, x	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
n	1.000	1.000	0.490	0.001	0.000	0.000	0.000	0.000	0.000	0.002	1.000	1.000
"Qinux	118.3	175.7	247.0	154.9	0.0	0.0	0.0	0.0	0.0	139.4	140.7	117.1
"Qst	118.3	175.7	247.0	154.9	0.0	0.0	0.0	0.0	0.0	139.4	140.7	117.1
X .	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

5.

La simbolgia è riferita al bilancio termico di un generico sottosistema energetico descritta dall'equazione (5) UNITS11300-2

- 6. Con il bottone "Solare" si possono selezionare le caratteristiche del pannello.
- 7. Notare che nella seconda riga viene indicata mensilmente la quota di copertura % sul fabbisogno QGH,out

Nota:

Nel caso si cambi località climatica è necessario rientrare in questo dialogo e ripremere il pulsante "Solare" per aggiornare i dati

3.3.2 Risultati relativi al fabbisogno di EPci

Il calcolo è conforme alla formula (46) -15833 e collegate.

83

Sono indicati i seguenti valori:

- i range delle classi A+..F
- Fabbisogno specifico di energia primaria per la climatizzazione invernale (EPci) con scarto % sul valore limite
- Valore limite EPci
- Valore limite EPci -20%
- Valore limite EPci -50%
- EPci limite per S/V=0.2
- EPci limite per S/V=0.9

3.3.2.1 Dettaglio calcolo fabbisogno energia primaria

Tabella	Schema									
	Ott	Nov	Dic	Gen	Feb	Mar	Apr		%	energia [kWh]
QT	434	1546	2231	2416	1884	1426	383	10319	+ 42	energia scambiata per trasmissione con l'esterno
QG	0	0	0	0	0	0	0	0	+ 0	energia scambiata per trasmissione con il terreno
QV	325	1156	1669	1807	1409	1067	287	7720	+ 32	energia scambiata per ventilazione/infiltrazione
QU	271	963	1389	1505	1173	888	239	6427	+ 26	energia scambiata con ambienti non riscaldati
QA	0	0	0	0	0	0	0	0	+ 0	energia scambiata con ambienti a temperatura fiss
QL	1030	3665	5289	5727	4466	3380	909	24466		energia scambiata totale: (QT+QG+QU)+QV+QA
QI	1353	1309	1353	1353	1222	1353	1309	9250	- 38	apporti energia dovuti a sorgenti interne
QS	1322	710	564	635	963	1717	2173	8084	- 33	apporti energia radiaz. solare (componenti traspar
QSe	0	0	0	0	0	0	0	0		apporti energia radiaz. solare (componenti opachi)
QTs	0	0	0	0	0	0	0	0		fabbisogno energetico utile in condizioni ideali
QSeS	0	0	0	0	0	0	0	0	+ 0	fabbisogno energetico utile in regime non continuo
QSsS	0	0	0	0	0	0	0	0		fabbisogno energetico utile in condizioni reali
nu	0.701	1.000	1.000	1.000	1.000	0.973	0.522			energia termica fornita dal sistema di produzione
QNH	1	1646	3373	3739	2282	392	0	11434		energia primaria per il funzionamento degli ausiliari
Rrcv	0	0	0	0	0	0	0	0		energia primaria richiesta dal sistema di produzion
Wrev	0	0	0	0	0	0	0	0		fabbisogno complessivo mensile di energia primari
QLeh	0	533	1092	1210	739	127	0	3701		Perdite sistema emissione
Weh	0	0	0	0	0	0	0	0		energia elettrica sistema emissione
QLdh	0	70	143	158	97	17	0	484		Perdite sistema distribuzione
Wdh	0	0	0	0	0	0	0	0		energia elettrica sistema distribuzione
QLsh	49	86	89	89	81	89	43	527		Perdite sistema accumulo
Wsh	0	0	0	0	0	0	0	0		energia elettrica sistema accumulo
QLph	15	-30	-81	-91	-50	16	14	-207		Perdite sistema generazione
Wph	1	32	64	71	44	9	1	223		energia elettrica sistema generazione
Qfv	0	0	0	0	0	0	0	0		contributo fotovoltaico
QEH	2	79	157	174	107	22	2	543		energia elettrica globale
OEPH	68	2357	4720	5222	3219	655	58	16299		energia primaria

3.4 Fabbisogno termico per la produzione di acqua calda sanitaria

Il calcolo del fabbisogno di energia primaria si effettua partendo dal fabbisogno termico per l'acqua calda sanitaria sommando progressivamente le perdite dei vari sottosistemi al netto dei recuperi dell'energia elettrica.

Il programma applica quanto descritto nella UNITS 11300-2:

- 5.2 Fabbisogno di energia per acqua calda sanitaria
- 6.9 Rendimenti e perdite dei sottosistemi per ACS

Lo schema di calcolo indicato nella figura sottostante (conforme alla UNITS 11300-2), permette di:

- accedere a tutti i dati necessari ai sottosistemi (cliccando sul titolo dei vari riquadri)
- visualizzare tutti i parziali di calcolo

84

Si accede a questa funzionalità dal modulo "Calcolo fabbisogno energia primaria" (Menù File-Fabbisogno ACS)

3.4.1 Fabbisogno ACS

Nello schema sono indicati:

- Q'w: fabbisogno specifico giornaliero per la produzione ACS
- + \mathbf{Q}_{NW} fabbisogno termico annuale per la produzione ACS in kWh

Cliccando nel riquadro FABBISOGNO è possibile impostare i dati necessari e visualizzare i risultati.

Nel caso di **edifici residenziali** il fabbisogno specifico è ricavato automaticamente in base al prospetto 12:

in presenza di edificio centralizzato

- 1. spuntare la corrispondente casella "Edificio centralizzato con Nr appartamenti" e inserire:
- 2. il Numero di appartamenti
- 3. la Su media.

In alternativa, inserire direttamente (cliccare valore di input) il fabbisogno specifico Q'w)

Nel caso di edifici NON residenziali:

il Fabbisogno specifico è ricavato automaticamente in base alla destinazione d'uso (prospetto 13) o inserire direttamente (cliccare valore di input) il fabbisogno specifico Q'w).

3.4.2 Sottosistema erogazione

Nello schema viene indicato il bilancio enrgetico relativo al sottosistema di erogazione.

Cliccando nel riquadro EROGAZIONE si accede al dialogo per impostare i dati:

siliari (kW)		0 000 1
	I	0.000
ica per riscaldamento	istantaneo ACS	
ma di erogazione		0.950
	ica per riscaldamento ma di erogazione	ica per riscaldamento istantaneo ACS ma di erogazione

La potenza degli ausiliari deve essere compilata nel caso in cui siano installati dei dispositivi elettronici (ad esempio rubinetti elettronici) in cui l'alimentazione elettrica è costituita da trasformatori di sicurezza (rif. CENED)

3.4.3 Sottosistema distribuzione ACS

Nello schema viene indicato il bilancio enrgetico relativo al sottosistema di distribuzione.

Cliccando nel riquadro DISTRIBUZIONE si accede al dialogo per impostare i dati:

🔿 Sistemi installati prima della 373/76 senza ricircolo		
🔿 Sistemi installati prima della 373/76 con ricircolo		
🔿 Sistemi installati dopo della 373/76 senza ricircolo		
Sistemi installati dopo della 373/76 con ricircolo		
○ Sistemi autonomi con generatore combinato o dedicato con portata termica < 35 kW senza ricircolo		
Rendimento di distribuzione		

Da notare che sono disponibili tre metodologie di calcolo:

- da prospetti
- calcolo analitico A (simile a quello per la rete di riscaldamento)
- calcolo semplificato

3.4.3.1 Calcolo semplificato perdite distribuzione ACS

Questo è un metodo forfettario per la determinazione delle perdite di distribuzione ACS, applicabile nel caso di edifici esistenti, qualora sia presente una rete di ricircolo (Fonte 5763 Regione Lombardia, conforme alla UNI EN 15316-3-2)

91

3.4.4 Sottosistema accumulo ACS

Nello schema viene indicato il bilancio enrgetico relativo al sottosistema di accumulo.

Cliccando nel riquadro ACCUMULO si accede al dialogo per impostare i dati

NOTA CENED:

inserire la potenza degli ausiliari, costituiti da resistenze elettriche di back up o post-riscaldamento o mantenimento del livello termico anche in caso di generatore disattivato.

3.4.5 Sottosistema generazione ACS

Nel caso separato nel seguente schema viene indicato il bilancio enrgetico relativo al sottosistema di generazione

Nel caso di edificio centralizzato (opzione impostabile nel dialogo Fabbisogno ACS) sono disponibili i metodi B2 e B3 dell'appendice B UNITS 11300-2

Nel caso combinato invece sono presenti due blocchi relativi al calcolo del sistema di generazione:

- 1. GEN. ESTATE: relativo al calcolo nel periodo estivo. Si può impostare un rendimento estivo desumendolo dai prospetti
- 2. GEN. INVERNO: relativo al calcolo nel periodo combinato invernale (riscaldamento + acs). In questo caso il rendimento del generatore viene calcolato col procedimento per il riscaldamento

Cliccando nel riquadro GENERAZIONE (oppure GEN.ESTATE) si accede al dialogo per impostare i dati

94

Dati sottosistema di generazione ACS 🛛 🛛 🔀			
Tipo apparecchio - Versione (Prospetto XXXII)			
🔿 Generatore a gas di tipo istantaneo per sola produzione di acqua calda sanitaria - Tipo B con pilota permanente			
💿 Generatore a gas di tipo istantaneo per sola produzione di acqua calda sanitaria - Tipo B senza pilota			
🔿 Generatore a gas di tipo istantaneo per sola produzione di acqua calda sanitaria - Tipo C senza pilota			
O Generatore a gas ad accumulo per sola produzione di acqua calda sanitaria - Tipo B con pilota permanente			
O Generatore a gas ad accumulo per sola produzione di acqua calda sanitaria - Tipo B senza pilota			
O Generatore a gas ad accumulo per sola produzione di acqua calda sanitaria - Tipo C senza pilota			
C Bollitore elettrico ad accumulo - #			
O Bollitori ad accumulo a fuoco diretto - A camera aperta			
O Bollitori ad accumulo a fuoco diretto - A condensazione			
Rendimento di generazione 0.77 En uniferenzia ausiliari (kW) 0.200			
Funzionamento sistema generazione ACS nel periodo di raffrescamento (GENERATORE COMBINATO)			
🕼 trascurare il sottosistema di generazione			
Tipo combustibile Gasolio			

Il Tipo di combustibile viene usato per il calcolo del Fabbisogno di combustibile ACS (Paragrafo 6.e.1 della relazione tecnica)

Nel caso di generatore COMBINATO spuntare la casella indicata nella figura sottostante:

(ACS e climatizzazione	D invernale)
EROGAZIONE	

Se combinato il sottosistema di generazione verrà sdoppiato (per i 2 periodi INVERNO/ESTATE)

3.4.6 Contributo solare termico

Sono indicati i seguenti dati:

- QST: contributo energetico annuale dell'impianto solare termico
- percentuale di copertura calcolata sul fabbisogno di energia primaria per la produzione di ACS
- efficienza media del pannello

Cliccando nel riquadro SOLARE si accede al dialogo per impostare i dati:

🔘 Non Vetrato	🔿 Vetrato	A evacuazion	e
-Proprietà collettore (P.X	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	🗖 Valori ir	nput —
Efficienza			0.76
Coeff. di perdita globa	e l° ordine		1.200
Coeff. di perdita global	e II° ordine		0.008
nclinazione/orientamento	90° SudEs	t/SudOvest	•
Superficie captante		24.00	

Il calcolo avviene in conformità al paragrafo E.8.1-15833

3.4.7 Risultati relativi al fabbisogno ACS

$$\mathbf{Q}_{\text{EVV,in}} = \left[\left(\mathbf{W}_{\text{eVV}} + \mathbf{W}_{\text{dVV}} + \mathbf{W}_{\text{sVV}} + \mathbf{W}_{\text{gVV}} - \mathbf{Q}_{\text{EVV}} \right) / 0.41 = 281 \right]$$
$$\mathbf{Q}_{\text{EPVV}} = \mathbf{Q}_{\text{EVV,in}} + \mathbf{Q}_{\text{gVV,in}} - \mathbf{Q}_{\text{ST}} = 3772$$

Il calcolo è conforme alla formula 123-15833 e collegate.

Il valore indicato è il Fabbisogno specifico di energia primaria per la produzione di ACS (EPw)

3.5 Contributo fotovoltaico

Sono indicati i seguenti dati:

- QFV contributo energetico dovuto all'impianto solare fotovoltaico
- efficienza media del pannello
- QFVh quota del contributo utilizzata nel calcolo del fabbisogno di energia primaria per la climatizzazione invernale
- QFVw quota del contributo utilizzata nel calcolo del fabbisogno di energia primaria per la produzione ACS
- QFVplus quota del contributo non utilizzata

96

Tipo di celle	Silicio mono-cristallino 📃 🔽
Efficienza	(input) 0.140
Inclinazione/Orientamento	30° Sud 💌
Superficie captante (m²)	24.0

Cliccando nel riquadro FOTOVOLTAICO si accede al dialogo per impostare i dati:

Il contributo del solare fotovoltaico viene calcolato in accordo con il paragrafo E.8.2. Se l'impianto solare fotovoltaico serve una pompa di calore alimentata ad energia elettrica, il contributo energetico (Q_{FV}/n_{sen}) viene detratto integralmente dal fabbisogno di energia primaria (127) ; negli altri casi di sistemi di generazione, la detrazione avviene solo per la quota inerente il fabbisogno di energia elettrica degli ausiliari.

Il calcolo del contributo fotovoltaico avviene anche nei mesi complementari al periodo di riscaldamento ed è utilizzato per compensare l'energia elettrica consumata dagli eventuali ausiliari elettrici ACS.

L'Opzione per disabilitare questo calcolo verrà resa disponibile in una prossima revisione

Stima10 - UNITS 11300 - 1 e 2

4 Compilazione relazione tecnica

Concluse le operazioni di calcolo del fabbisogno termico di PICCO ed ENERGETICO, si procede alla stesura della *RELAZIONE TECNICA LEGGE 10/91* che attesta la rispondenza del progetto alle prescrizioni di legge.

L'allegato B della delibera regionale 5773 contiene uno schema di relazione tecnica che indica le informazioni minime necessarie per accertare l'osservanza delle norme vigenti da parte degli organismi competenti.

Sono presenti 5 nuovi modelli conformi all'allegato B. Questi modelli coprono i casi previsti nel paragrafo 4 della suddetta delibera. I modelli sono personalizzabili togliendo la marcatura dalla casella di sola lettura quando è attivo l'editor interno. Ricordarsi inoltre che la modifica dei paragrafi vincolati con l'icona lucchetto non è possibile (eventualmente sbloccare prima il lucchetto con doppio click)

Il rapporto di calcolo dettagliato e giustificativo di quanto riportato nel Modello formale, potrà essere allegato e costituire parte della Relazione tecnica Legge 10/91 in fase di stampa.

4.1 Editor rtf della relazione tecnica ministeriale

Con questo editor è possibile personalizzare, il testo della relazione tecnica inerente il modello ministeriale, in tutte le sue parti.

4.1.1 Funzionalità principali

- visualizzazione a colori dei diversi paragrafi, con indicazione di quelli legati al calcolo (con possibilità di svincolarli)
- navigazione veloce tra i paragrafi tramite indice gerarchico
- inserimento e salvataggio in un archivio apposito dei vari paragrafi (in formato RTF)
- gestione delle tipiche funzioni di un editor RTF (anche tabelle)
- creazione di modelli personalizzati denominati ARCHETIPI (usabili in qualsiasi lavoro): il modello creato dall'utente, mantiene i collegamenti con i dati calcolati dal programma

4.1.2 Terminologia usata

- PARAGRAFO: usiamo questo termine per indicare le varie suddivisioni del corpo del testo della relazione. Ogni paragrafo è costituito da:
 - o Titolo: parte fissa
 - o Frase: parte variabile
 - o Codice: usata per scopi interni al programma
- FRASE: indichiamo col termine generico di "frase" la parte variabile di ogni paragrafo. Le frasi sono generalmente derivate da:

- o calcoli effettuati dal programma: es: Fen, rendimenti, Cd
- o dati impostati nelle finestre di dialogo:
 - es: "Comune di", terminale di erogazione, combustibile
- o archivio frasi preparato dall'utente
- SEGNALIBRO: coppia di indicatori speciali che racchiudono la frase, usati internamente dal programma per:
 - o le operazioni di aggiornamento dinamico (cioè ad es. aggiornare la pagina dei principali risultati di calcolo)
 - o la gestione dell'indice gerarchico
 - o le operazioni con l'archivio frasi, di prelevamento e salvataggio di una frase
 - o si possono visualizzare con la casella corrispondente:

🔲 Mostra segnalibri

o Esempio:

I codici "E3", "E4"... sono usati internamente del programma.

Lo stile con il quale verrà stampata la frase dipende dalle impostazioni iniziali e dalle successive modifiche fatte tramite l'editor.

4.1.3 Come attivare l'editor

- Dall'icona posta sulla ToolBar della videata principale o dal Menù "File-Compilazione", si entra direttamente nell'editor del modello ministeriale della relazione tecnica (nel caso non sia ancora stato impostato un modello vedi "<u>Come impostare un modello</u>").
- 2. Entrando nell'editor viene aggiornato il contenuto dinamico (cioè i paragrafi legati alle variabili di input e di calcolo del programma)

Inoltre viene generato automaticamente l'indice dei paragrafi in base al modello scelto. Sono disponibili 3 viste dell'indice: (Frasi svincolate - vuote – tutte)

L'indice si può espandere o collassare con i pulsanti:

Al tipo di frase è associato una icona:

- a. Sistemi di generazione: Esempio di frase svincolata
 b. <u>• n100L: valore minimo prescritto [%]</u> Esempio di frase legata a una variabile calcolata
 c. <u>• Combustibile utilizzator</u> Esempio di frase legata a una variabile di input che è stata svincolata dall'utente (doppio click). Le variabili svincolate non saranno più aggiornate e quindi le modifiche effettuate dall'utente verranno "ricordate"
- 3. Da notare che sono presenti due viste di editing (cioè due riquadri nei quali è possibile effettuare l'editing):

- a. Riquadro di editing del paragrafo: viene mostrato solo il paragrafo evidenziato e nel caso non sia vincolato, è possibile modificare.
- B. Riquadro di editing della pagina: inizialmente impostato in sola lettura (cliccare sulla corrispondente casella posta sulla Toolbar per sbloccare ed editare a piena pagina)
- 4. E' possibile ripristinare il modello originale (Menù File Nuovo modello originale):
- 5. E' possibile caricare un altro modello da un archetipo esistente (Menù File Carica Archetipo)

4.1.4 Descrizione dell'editor della relazione tecnica

La modifica o l'inserimento delle frasi viene fatto tramite i più comuni comandi base di editing (alcuni di questi sono attivi solo nell'editor di pagina e non in quello di paragrafo).

■ Times New Roman ■ 10 ■ ■ Tipo, dimensione e colore del font

- **B Z U** Stile del testo selezionato: colore, grassetto, corsivo, sottolineatura
- A^S A_S apice, pedice
- 📧 🗐 🗐 Allineamento del testo selezionato: sinistra, centro, giustificato, destra
- 🔳 🔍 🕙 Zoom: larghezza finestra, altezza finestra, :2, x2
- E Pagina precedente, successiva
- 🖻 🖆 🖺 🛍 Annulla, ripristina, taglia, copia, incolla
- 🔹 🖄 🎦 Trova, Trova e sostituisci
- Elenco puntato o numerato
- EEAumenta o diminuisci rientro
- E Crea tabella:

1×1 Con il mouse trascinare la casella blu fino ad ottenere il numero di righe e colonne desiderate: ad es volendo ottenere 3x2...

- 🔳 🖻 🖻 Riga tabella: evidenzia, inserisci, elimina
- 💷 🖽 🔳 Colonna tabella: inserisci, elimina, evidenzia
- Delle tabella: dividi, unisci
- Visualizza i segnalini di ritorno a capo, tabulazioni, spazi bianchi Esempio:

```
5.1 a.7.-Sistemi di accumulo termico (tipologie):¶
Non previsti...¶
¶
5.1 a.8.-Sistemi di produzione e di distribuzione dell'acqua calda sanitaria:¶
La produzione di acqua calda sanitaria è incorpor ata nel generatore di calore; r ete di distribuzione priva di ricircolo...¶
§.1 a.9.-Durezza dell'acqua di alimentazione dei generatori di calore (per potenza installata ¶
→ uguale o maggiore a 350 kW): Dato non richiesto...¶
```

Comandi attivi da menù:

- File
 - Nuovo documento vuoto: cancella il documento a video e ne prepara uno vuoto. Notare che i segnalibri e tutte le frasi vengono perse. La relazione potrà essere costruita solo da una parte fissa.
 - Nuovo modello originale: apre il dialogo per ripristinare o cambiare il modello di default (ad es. si possono impostare i paragrafi F e G della relazione tecnica)
 - Carica nuovo archetipo
 - Carica documento RTF: Notare che i segnalibri e tutte le frasi vengono perse. La relazione non potrà più essere aggiornata dinamicamente con i valori calcolati (se occorrono, dovranno essere inseriti manualmente).
 - Salva
 - o Salva frase: ... in archivio
 - o Salva con nome: permettere di fare una copia del testo della relazione su di un altro file
 - Stampa: apre il dialogo di stampa con la possibilità degli ulteriori dialoghi anteprima, opzioni, intestazione, esportazione PDF
- Modifica
 - o Annulla, ripristina
 - o Carattere: apre il dialogo di impostazione del font
 - o Copia, incolla, taglia
 - o Trova
 - Trova e sostituisci
 - Seleziona linea corrente
 - Seleziona tutto

- Inserisci
 - o Frase dall'archivio
 - $_{\odot}$ File : inserisce un file RTF o TXT in corrispondenza del cursore
 - Immagine (BMP, WMF)
 - Simboli
- Visualizza
- $_{\odot}$ Segnalibri
- o Formattazione
- o Frasi svincolate/vuote/tutte

4.1.5 Archivio frasi

Questo archivio permette di organizzare le frasi di ogni paragrafo, in modo da poter essere velocemente richiamate nei vari lavori.

Il file che le contiene si trova nella cartella ARCHIVI e si chiama MEMO_ARC.TRF. Comandi di gestione:

 Visualizza la lista delle frasi associabili al paragrafo in corrispondenza del cursore. Ad es. se il cursore è in corrispondenza di "Sistemi di distribuzione del vettore termico"

Notare che nella lista compare una segnalino (|) davanti al titolo della frase di default, cioè la frase che verrà selezionata automaticamente in fase di inizializzazione delle successive relazioni (quando non viene usato un archetipo).

Ogni volta che si seleziona una nuova frase, questa diviene la frase di default. Ad ogni frase deve essere associato un titolo (quando si crea la frase), che serve da riferimento (non fa parte della frase).

Confermando la scelta, tutta la frase sostituirà quella del paragrafo corrente.

 Con questa funzione è possibile memorizzare la frase del paragrafo in corrispondenza del cursore.

🧱 Salva frase del paragrafo evidenziato				
Inserisci un "titolo" per la frase da archiviare				
	4 <u>5</u>			
■====================================				
Regolatore della temperatura ambiente con orologio programmatore settimanale e				
giornalierodel tipo on/off.termostatiche con elemento sensibile ad olio.				
V OK X Cancel 7 Help				

Notare che occorre assegnare un titolo alla frase.

E' disponibile un editor per modificare la frase prima di archiviarla.

La frase viene archiviata in formato RTF, cioè ad es. è possibile aggiungere uno stile al testo e una tabella...

4.1.6 Come impostare un modello

- 1. Se si è scelto di lavorare con un <u>archetipo</u>, premendo l'icona di compilazione si entra direttamente nell'editor
- 2. Altrimenti, la prima volta che si attiva la compilazione del modello ministeriale appare la seguente finestra di dialogo

A questo punto sono possibili 2 alternative:

- a. Premere il pulsante "Editor" per attivare subito l'editor della relazione, partendo da un generico modello di default.
- b. Scorrere le 3 pagine del dialogo, impostando le varie opzioni; in questo modo viene rigenerato il modello scelto in base alle opzioni..
- 3. Le successive volte che si attiva la compilazione (dall'icona posta sulla ToolBar della

videata principale o dal Menù "File-Compilazione"), si entra direttamente nell'editor. Per riattivare il dialogo precedente di generazione modello (ad es. per cambiare modello o per rigenerare il modello base, si dovrà utilizzare "Menù File-Nuovo modello originale", dall'interno dell'editor.

Il Modello si potrà cambiare anche da Menù Revisione – Modello ministeriale (nel quale si ha la possibilità di caricare un Nuovo Archetipo).

4.1.7 Archivio archetipi

Per archetipo si intende un prototipo di Relazione tecnica definita negli elementi fondamentali:

a. singolo/gruppo di edifici-impianti

- b. tipo di generatore (caldaia, pompa di calore ...)
- c. modello di relazione (A,B,C) precompilato (frasi)

d. formattazione (font e impaginazione) I dati in esso contenuti sono tutti modificabili.

Ogni archetipo è individuato da una descrizione e da un nome di file (che viene memorizzato nella cartella ARCHIVI con estensione COP). L'utente può creare i propri archetipi, personalizzando quelli forniti di default e salvandoli con un altro nome.

4.1.7.1 Come creare un nuovo archetipo

- 1. Creare un lavoro nuovo
- 2. Completare i quadri sequenziali con l'inserimento dei principali dati per il progetto (Modello relazione tecnica, informazioni generali, dati costruttivi, impostazioni per il calcolo di picco, impostazioni per il calcolo del fen ...)
- 3. File-Compilazione modello ministeriale: completare i vari quadri e una volta entrati nell'editor, completare le frasi dei vari paragrafi non legati (cioè quelli senza lucchetto nella corrispondente voce dell'indice gerarchico)
- 4. Salvare e uscire dall'editor
- 5. BaseDati-Salva archetipo: il dialogo che appare permette di creare un nuovo archetipo o di sovrascivere uno esistente con tutte le impostazioni del lavoro attivo

🐺 Dia	ilogo di salvataggio Nuovo archetipo				
	Descrizione archetipi esistenti	File			
1	Modello Allegato A - Impianto autonomo. Caldaia Standard	Default.A1			
2	Modello Allegato A - Impianto autonomo con pannelli radianti con caldaia a condensazione	Default.A2			
3	Modello Allegato A - Impianto centralizzato con suddivisione a zone e misura del calore. Caldaia Standard	Default.A3			
Sele uno	eziona una delle opzioni seguenti per creare un nuovo archetipo o per sovras degli archetipi già esistenti zioni di salvataggio Sovrascrivi l'archetipo selezionato	scivere			
Descrizione del nuovo archetipo					
Modello Allegato A - Impianto autonomo. Caldaia Standard					
Nom	Nome file del nuovo archetipo (senza il carattere punto)				
		Cancel ? <u>H</u> elp			

La precedente procedura può essere utilizzata anche partendo da un lavoro già esistente.
4.1.7.2 Come usare un archetipo

1. Quando si inizia un lavoro nuovo: nel dialogo di selezione modello relazione, spuntare la casella "usa archetipo" e premere l'icona a lato

postazioni generali del progetto MODELLO RELAZIONE TECNICA	
Epoca limiti di legge DIgs 311 - 1 gen 2008 💌	
DLg311+Legge 10 · Modello I1 DLg311+Legge 10 · Modello I2 DLg311+Legge 10 · Modello I3 DLg311+Legge 10 · Modello I4 DLg311+Legge 10 · Modello I5 DLg311+Legge 10 · Modello I6 EGGE 10/91 + DLg 192/05 + DLg 311/07 (Modello secondo Allegato E) Opere relative ad edifici di nuova costruzione o a ristrutturazione di edifici nei casi previsti dall'Art. 3.2, lettere a) e b) (Allegato I.1)	1 di 10
Z Usa archetipo	🗶 Cancel
<nessuno></nessuno>	🧭 Default
Per archetipo si intende un prototipo di Relazione tecnica definita negli elementi fondamentali: - singolo/gruppo di edifici-impianti - tipo di generatore (caldaia, pompa di calore) - modello di relazione (A,B,C) precompilato (frasi) - formattazione (font e impaginazione) I dati in esso contenuti sono tutti modificabili	<u>? Н</u> еір

2. Selezionare dalla lista l'archetipo desiderato e confermare

🐺 Sel	eziona un archetipo		
	Descrizione archetipi esistenti		File
1	Modello Allegato A - Impianto autono	mo. Caldaia Standard	Default.A1
2	Modello Allegato A - Impianto autono condensazione	mo con pannelli radianti con caldaia a	Default.A2
3	Modello Allegato A - Impianto centrali misura del calore. Caldaia Standard	izzato con suddivisione a zone e	Default.A3
			·
Visua	alizza tutte x calcolo energetico		
varia	abili	valore	
TIPO E	EDIFICIO	Appartamento (ZONA A) di civile abitazione	
COMM	ITTENTE	WATTS	
VIA		Via P.zza Corso Viale	
LOCAL	LITA	MILANO	
LAVOR	RI DI	nuova costruzione	
UBICA	ZIONE	in complesso urbano	
CATE	GORIA	E.1(1)	
PROG	ETTISTA	nome Ing. cognome	
CONC	ESSIONE		
DATA	CONCESSIONE		
N° UN	ITA' ABITATIVE	1	
DDOG		nome las cospone	
	Anteprin	na Relazione tecnica 🛛 🗸 OK	K X Cancel ? Help

- 3. A questo punto nel lavoro sono stati impostati tutti i dati di default contenuti nell'archetipo ed è stato importato il modello della relazione tecnica impostato nell'archetipo comprensivo di tutte le frasi di default.
- 4. E' ora possibile chiudere subito il quadro delle impostazioni generali di progetto confermando (senza scorrere tutti i quadri sequenziali), oppure scorrere i quadri e apportare ulteriori modifiche ai dati che sono stati recuperati dall'archetipo selezionato (ad es. la località climatica delle II pag del dialogo).

NOTA: a lavoro già in corso si potrà ritornare in questo dialogo dal menù "Revisione-Modello relazione tecnica", per selezionare da un archetipo SOLO il modello di relazione tecnica con tutte le frasi preimpostate (cioè i dati impostati negli altri quadri non vengono caricati).

La stessa operazione si può fare nell'editor (File-Carica archetipo)

Stima10 - UNITS 11300 - 1 e 2

112

5 Certificazione energetica preliminare/regionale

File - Generazione Attestato Certificazione preliminare/regionale

Questa procedura è stata introdotta in epoca antecedente le Linee guida nazionali (10-07-09) per i seguenti scopi:

- Regione Lombardia: certificato preliminare ad uso progettista ed esportazione file XML per il CENED
- Regione Emilia: Attestato di certficazione secondo Dgr 156
- Altre Regioni: Certificazione volontaria con sistema di classificazione coerente con la bozza delle linee guida nazionali 2008

Entrando nella videata viene subito visualizzata l'anteprima del certificato.

Nel caso si voglia stampare il certificato e necessario compilare alcuni quadri informativi.

- Dati immobile
- Interventi migliorativi
- Approvigionamento combustibile

Nel caso si voglia stampare il logo del comune è necessario inserire nella sottocartella PUT un file in formato BMP assegnando lo stesso nome del comune. Ad es. : Biassono.bmp

Per la metodologia Lombarda:

se invece si vuole procedere con il CENED, la compilazione di tutti i quadri informativi è opzionale e

ê

quindi è sufficiente attivare il comando di esportazione XML (Menù File - Esportazione XML)

5.1 Dati immobile

)ati immobile	Interventi	migliorativi	Appunti	del certificatoro	e Appro	ovigionamento Comb	ustibile
Nome Edificio	TestComb	ustione+ACSse	eparata				
Povincia	MILANO				Comune	MILANO	
Informazioni am	ministrative						
							1
Numero di pro	tocollo	ABCDE-1123	3456				- 5
Nome intestata	ario	esempio DLg	is 192				
Indirizzo		Via P.zza Co	rso Viale				Ì
Foglio		123		Particella 4		Subalte	_
Tipologia di int	ervento	nuova costru	izione				
Progettista		nome Ing. co	gnome				
Direttore Lavo	ri	nome Ing. co	gnome			Land	
Anno Costruzio	one	2007				- A	
Costruttore		Edil StimaTfn	n srl		7	÷1	
Soggetto Certi	ficazione	Paolo Rossi	ş		đ		
Elenco Costific	atori N°	890					

5.2 Interventi migliorativi

Intervento	Priorità bassa	Priorità media	Priorità alta	
Coibentazione delle strutture opache verticali	C	0	0	
Coibentazione delle coperture	c	0	0	
Coibentazione dei pavimenti	0	C	0	à,
Coibentazione delle chiusure trasparenti	۰	0	0	à
Sostituzione generatore di calore	c	0	à	
Adeguamento sistema distribuzione	¢	0		
Adeguamento sistema emissione	·	100	3	
Adeguamento sistema regolazione	c /	-e-1		

114

5.3 Approvigionamento combustibile

Le scelte influenzano il calcolo della quantità di CO_{2eq} emessa, Indicatore delle Emissioni di gas ad effetto serra, in base ad un fattore di emissione ricavato dal prospetto XXXXVI. (E.9-15833)

Se il generatore è una caldaia a condensazione, la scelta del combustibile viene fatta nel corrispondente dialogo del sottosistema di generazione.

Se il generatore è combinato per la produzione ACS, il gruppo di scelta "Combustibile per impianto ACS" non è visibile.

Se il generatore è una pompa di calore con energia utilizzata elettrica, la scelta del combustibile per impianto di riscaldamento è disabilitata (Vettore energetico = Energia elettrica)

5.4 Appunti certificatore

I dati corrispondono alle note del certificatore e vengono solo esportate nel file XML (e probabilmente sono archiviate nel file CND e quindi inviate al catasto)

5.5 Esportazione XML

Nel caso di Metodologia Lombarda: Menù File - Esportazione XML (o corrispondente icona)

Il file contiene tutti dati di input e i principali risultati di calcolo. Può essere importato nel CENED o in un altro software in grado di interpretare il contenuto. Il file schema XSD usato per la validazione del formato è quello pubblicato dal CENED il 25 giugno 2008 con il rilascio della versione 1.08.06.19.

Pertanto le versioni precedenti del software CENED non sono compatibili con il nuovo formato.

AVVERTENZE:

- Il nome del comune viene recuperato dall'archivio parametri climatici e riscritto con le sole iniziali in maiuscolo. Nel caso non venga riconosciuto dal programma Cened, impostare il corrispondente Comune dal menù a discesa nella pagina Dati Contesto. Per essere importato automaticamente il nome in archivio deve corrispondere perfettamente alla voce del Cened (ad esempio fare attenzione alle maiuscole e alle accentate)
- 2. La descrizione delle strutture viene troncata a 50 caratteri (inoltre i caratteri <> vengono mappati in #|
- 3. E[°] disponibile una opzione per poter raggruppare le strutture dell'involucro opaco e trasparente per Codice ed esposizione (Menù Revisione Impostazioni Regione Lombardia Scheda Varie)
- 4. I dati dei componenti finestrati (Vetro, Telaio, Distanziatore) si impostano nel dialogo Dati Finestra XML
- 5. I ponti termici non vengono esportati
- 6. L'eventuale serra solare non viene esportata (è necessario quindi completare i relativi moduli del

CENED)

Il file XSD di validazione, non permette di esportare correttamente le ore di funzionamento e la
potenza degli ausiliari del sistema di recupero. Pertanto questi dati dovranno essere reimpostati nel
software CENED nel corrispondente modulo.

5.5.1 Dati finestra XML

Questo dialogo si attiva dal dialogo componenti finestrati (pulsante XML accanto alla voce Telaio)

i Finestra per XML-CE	NED
Tipo telaio	
Legno	•
Tipo vetro	
Singolo	-
Distanziatore Metallico	
Distanziatore Metallico Nota:	<u> </u>
Distanziatore Metallico Nota: Queste impostazioni servono sol delle stringhe di descrizione. I valori di trasmittanza restano qu	o per l'esportazione XML relli già impostati.

Le varie tipologie si riferiscono ai corrispondenti prospetti della 15833:

- 1. Tipo telaio: XIV
- 2. Tipo vetro: XIII

Il distanziatore può essere Metallico o Plastico.

Queste scelte non recuperano automaticamente i valori di trasmittanza di default indicati nei prospetti e non influenzano quindi il calcolo della trasmittanza delle finestre. I valori di trasmittanza usati per il calcolo, sono da impostare nei Dati generali di input struttura (paragrafo <u>Trasmittanza termica finestre</u>). Stima10 - UNITS 11300 - 1 e 2

6 Attribuzione dei ponti termici ai componenti opachi

Per ogni parete opaca viene calcolata una trasmittanza media considerando anche i ponti termici ad essa associati. Modo operativo:

- 1. Durante il calcolo di picco o energetico, il programma prepara una serie di tabelle (una per ogni struttura opaca) nelle quali viene visualizzata: Prima riga: Codice, Area totale, U della parete opaca Righe successive: Codice, lunghezza totale lineica, Ulineico dei ponti termici associati
- 2. I ponti termici vengono associati automaticamente con la seguente regola: Tutti i PTE delle righe sottostanti una P.E (anche non adiacenti) fino ad una riga con altro codice P.E, Pav o SOF
- E' possibile opzionalmente editare le tabelle (disabilitando così l'automatismo)
 Da queste tabelle viene calcolato il valore medio della trasmittanza da confrontare con il valore limite

6.1 Visualizzazione - editing delle tabelle Um

Si accede alle tabelle per il calcolo della trasmittanza media Um dal riepilogo "Verfiche di legge Dlg192/311" - Impostazioni Um

Queste tabelle hanno le seguenti funzionalità:

- mostrano per ogni parete opaca, i ponti termici associati e un'anteprima del dettaglio di calcolo
- permettono di disabilitare l'automatismo di calcolo in modo da editare le tabelle (marcare la casella ٠ "Edit tabella" per ogni parete opaca che si desidera editare)

Elenco s	trutture o	con ponti	termici	associati	×
100	301 3	03 30	4 510) 602	
🗖 Edi	t tabella				
Co	A;L	U ;ψ	PTE	Riferimento	
100	13.58	0.290		020101-01	Del Riga
702	24.00	0.140	×	020101-03	Ins Riga
100	14.30	0.290		020103-01	Add Biga
702	10.80	0.140	×	020103-03	- Had Higa
100	14.74	0.290		020104-01	
702	5.40	0.140	X	020104-03	
100	11.22	0.290		020104-04	
100	5.66	0.290		020105-01	
702	5.40	0.140	×	020105-03	
100	5.72	0.290		020106-01	
702	12.00	0.140	×	020106-03	
100	14.68	0.290		020106-04	
702	5.40	0.140	×	020106-06	
Tras	smittanza i	media Um	+ U·A Ζ_	<u>Σψ·Ι</u> [₩·m²/K] = 0.400	ОК
Area	a totale		2 R	[m ²] = 79.9	🗙 Cancel
Ht				[\#/K] = 31.994	

NOTA: Nel caso si voglia editare la tabella si tenga presente che il marcatore della colonna PTE serve a riconoscere se le informazioni della riga sono da intendersi associate a un ponte termico o a una parete.

Ad es. se la casella della colonna PTE è marcata allora il valore indicato nella colonna "A ; L" è da intendersi come L=lunghezza lineica e quindi non verrà usato nella sommatoria a denominatore, per il calcolo della trasmittanza media.

6.1.1 Riepilogo Verfiche di legge Dlg192/311

Questo dialogo si attiva dalla videata di riepilogo energia (Visualizza - Verifiche di legge Dlg192-311)

Nuove funzionalità:

- Impostazioni Um: permette di accedere alle tabelle di calcolo della trasmittanza media delle pareti opache con i rispettivi ponti termici associati
- Usa Um per il confronto: marcando la casella, il confronto con il valore limite viene fatto utilizzando il valore di trasmittanza media Um

Strutture	conformi alla legge	ITEMENATIREEUNISTICKAUG	Usa	Um nel confr	onto [[<table-of-contents> Impostazioni Um</table-of-contents>	
Co	Тіро	Esposizione	MF (kg/m²)	U (₩/m²K)	Verifica	Note	
100 P.E	verticale opaca	Esterno	367.2	0.290	SI	U<0.44	
204 S.E	serramento	Esterno	20.0	1.790	SI	U<2.20	
204 S.E	vetro	Esterno	20.0	1.700	SI	U<1.70	
205 S.E	serramento	Esterno	20.0	1.776	SI	U<2.20	
205 S.E	vetro	Esterno	20.0	1.700	SI	U<1.70	
216 S.E	non riscaldati	Esterno	20.4	2.545	SI	U< 2.8	
303 P.I	verticale opaca	Non riscaldati	295.5	0.319	SI	U<0.44	
304 P.I	divisorio	TF	216.8	0.647	SI	U<0.80	

NOTE:

- 1. Si tenga presente che il confronto con il valor medio andrebbe effettuato (in caso di ristrutturazione edilizia) qualora fosse presente un ponte termico di disomogeneità strutturale non corretto o qualora la progettazione non ne preveda la correzione
- 2. Nel caso di PAV esposto verso terreno, il valore confrontato è quello del sistema pavimento-terreno

6.2 Stampa tabelle Um

Nel dialogo di Stampa è disponibile una nuova casella di controllo nella lista di composizione della relazione tecnica (Trasmittanza media)

- se marcata la tabella della Trasmittanza media viene stampata dopo la stampa della corrispondente struttura
- la stampa è collegata alla Tabella struttura (cioè non è possibile stamparla singolarmente)
- la stampa è disponibile se nella sessione di lavoro corrente è già stato attivato il calcolo globale

Stima10 - UNITS 11300 - 1 e 2

7 Guida D.Lgs n°311 - 29 Dicembre 2006

Il presente paragrafo riporta la guida fornita a Maggio 2007 con il rilascio della versione 6.2.05.

E' da intendersi come richiamo delle procedure applicative al Dlg311 a cui si farà riferimento nella descrizione di alcuni punti riguardanti il nuovo calcolo della RegioneLombardia.

La revisione qui descritta riguarda le nuove procedure integrate STIMA10 e TFM nel programma in applicazione del Decreto Legislativo 311/06 pubblicato su G.U. il 1 Febbraio 2007 ed in vigore dal giorno successivo.

Il Decreto ha modificato e corretto sostanzialmente i vincoli prestazionali e prescrittivi previsti negli Allegati I e C , confermando in regime transitorio il metodo di calcolo previsto dalla Legge 10/91

Si è quindi preferito mantenere nel programma tutte le funzionalità e i modelli di stampa previsti fino alla data di entrata in vigore del D.Lgs 311/06 e consentire all' utente attraverso nuovi campi input la selezione del tipo di Relazione tecnica che si intende eseguire.

Si è preferito inoltre inserire anche le tabelle previste a partire dal 1 Gennaio 2008 e le successive dal 2010 sia per i vincoli dell'indice di prestazione energetica (EPci in kW/hm2anno e kWhm3anno) che per le trasmittanze termiche (U).

Si osserva che è necessaria una preventiva conoscenza del contenuto del D.Lgs 311/06 ed in particolare dei suoi allegati, per un uso consapevole delle procedure informatiche oggetto delle presenti note.

7.1 I nuovi limiti di legge

Per una corretta scelta dei valori limite, è oggi necessario impostare due nuove variabili:

- 1. Categoria edificio:
- 2. Epoca limiti di legge

7.1.1 Categoria edificio

- seleziona il tipo di unità di misura e i limiti dell'indice di prestazione (EPci)
 In kWh/m²anno per edifici residenziali della classe E1, esclusi collegi, conventi, case di pena e caserme (Tabelle Allegato C 1.1, 1.2 e 1.3)
 - In kWh/m³anno per tutti gli altri edifici (Tabelle Allegato C 2.1, 2.2 e 2.3)
- influenza anche i punti dell'allegato I (nei quali viene richiesto di ... ad eccezione di E.6 e/o E.8)
- è impostabile nel dialogo Informazioni Generali (pulsante Classificazione), attivabile dal menù Revisioni

7.1.2 Epoca limiti di legge

- seleziona la corrispondente Tabella o Colonna dei valori limite (EPci e U) in base alla data di applicazione (2007, 2008, 2010).
- Permette di selezionare anche un modello di relazione precedente (Dlg192 2005 o antecedente)
- È impostabile nel dialogo Modello relazione/epoca limiti legge, attivabile dal menù Revisione

• E' possibile così eseguire, applicando in anticipo le tabelle collegate alle date 2008...2010, anche i calcoli previsti dal disposto ministeriale (DM 19 feb 2007) collegato alla Finanziaria 2007 e avvalersi delle detrazioni previste.

7.2 Valori limite trasmittanze

• Nel caso si applichi il punto 1 dell'allegato I (Modello di relazione I.1), la verifica delle diverse strutture edilizie opache e delle chiusure trasparenti che delimitano l' edificio è eseguita su limiti aumentati del 30% come indicato in I.1.c): notare che in questo caso i valori limite della colonna Note della corrispondente tabella di verifica sono già comprensivi di questa maggiorazione. (vedi esempio in figura seguente

Codice	Tipo	Esposizione	Mie(kg/m²)	U(W/m²K)	Verifica	N ote
100 P.E	verticale oplaca	Esterno	365.5	0.496	SI	(U < 0.60) C.
204 S.E	serramento	Esterno	20.0	2.670	51	(U<3.64) €.4a
204 S.E	vetro	Esterno	20.0	2.874	51	(U<3.12) C.4b
205 S.E	serramento	Esterno	20.0	2.654	SI	(U<3.64) C.4a
205 S.E	vetro	Esterno	20.0	2.874	SI	(U<3.12) C.4b
303 P.I	verticale oplaca	Non riscaldati	230.0	0.710	NO	(U < 0.60) C.
304 P.I	divisorio	TF	216.8	0.647	51	(U < 0.80) I.:
510 PAV	orizzontale oplaca	T1	756.3	0.302	SI	(U<0.56) C.3.2
602 SOF	divisorio	TE	511.3	0,760	51	(U < 0.80) 1.3

 Le strutture opache, verticali, orizzontali e inclinate, che delimitano verso l' ambiente esterno gli ambienti non riscaldati, devono rispettare il limite 0.8 W/m²K (1.7).

Il programma applica questa verifica alle strutture poste nelle zone U1, U2 ... che hanno nella colonna T la temperatura esterna di progetto.

- Nel caso delle porte opache, abbiamo aggiunto una opzione che le permette di selezionare quale valore limite confrontare (Tabella C.2 o Tabella C.4.a)
- Nei casi previsti al punto 2 dell'allegato I, se l'edificio rientra nella categoria E.8 non vengono sottoposte a verifica le strutture opache orizzontali o inclinate (I.2.b) e i componenti finestrati (I.2.c)
- Se l'edificio rientra nella categoria E.8 o si è in zona climatica A, non vengono sottoposte a verifica le strutture edilizie di separazione tra edifici (esposizione TF). Notare inoltre che in tutti gli altri casi la verifica viene fatta anche per i divisori orizzontali.
- Notare che (come nella precedente versione) la massa superficiale Ms è calcolata senza tener conto degli intonaci (strati con la sigla INT); è guesto il valore che viene stampato nella tabella di verifica. Da notare che nella corrispondente videata dell'archivio strutture (Revisione – massa) sono presenti entrambi i valori.

7.3 Verifica rendimenti

Vengono verificati nei corrispondenti casi previsti i seguenti rendimenti:

• C.5) ng = $(75 + 3 \log Pn)$ %

- l.1.b) ng = (65 + 3 log Pn) %
- I.4.a) n100 = (90 + 2 log Pn) %
- I.5.a) n30 = (85 + 3 log Pn) %
- I.6.a) n100 = (X + 2 log Pn) %

7.4 Verifica limitazione fabbisogno energetico per la climatizzazione estiva

Con esclusione delle categorie E.6 ed E.8 e in tutte le zone climatiche ad esclusione della F,

il programma effettua la seguente verifica:

- 1. calcola il valore medio mensile dell'irradianza sul piano orizzontale Ims
- 2. calcola la Ms massa superficiale (con esclusione degli intonaci)
- 3. verifica:

4. Nel caso che la verifica non sia positiva, verrà segnalato che le strutture non sono conformi.

In caso di verifica positiva verrà inserita nella relazione una nota al corrispondente punto ...

Ad esempio:

6.h) - Limitazione fabbisogno energetico per la climatizzazione estiva :

6.h.1 La prescrizione del pto 9.a (allegato I) :

6.h.2 La prescrizione del pto 9.b (allegato I): a norma di legge in quanto l'Irradianza sul piano orizzontale mese max. insolazione 278 è inferiore a 290 Wim² (Allegato 1.9.b)

7.5 Relazione tecnica

Sono presenti 6 nuovi modelli di **Relazione Tecnica** conformi all'allegato E. Questi modelli coprono i casi previsti dai corrispondenti punti dell'allegato I1..I.6 Riferirsi agli schemi di flusso relativi all'ambito di intervento per una illustrazione grafica delle varie casistiche.

I modelli sono personalizzabili togliendo la marcatura dalla casella di sola lettura quando è attivo l'editor interno.

Ricordarsi inoltre che la modifica dei paragrafi vincolati con l'icona lucchetto non è possibile (sbloccare prima il lucchetto con doppio click)

7.5.1 Ambito intervento - Modelli I.I e I.6

Lo schema si trova in formato più grande nel file PDF della GuidaDlg311.

7.5.2 Ambito intervento - Modelli I.2, I3, I4, I5

Lo schema si trova in formato più grande nel file PDF della GuidaDlg311.

7.6 Attestato di qualificazione energetica

E' inoltre disponibile una procedura per compilare **l'attestato di qualificazione energetica** sulla base di un modello predisposto dal ministero delle finanze per ottenere le agevolazioni fiscali previste dalla Finanziaria 2007.

L'attestato si può preparare con l'editor integrato nel programma, avvalendosi di una procedura di compilazione automatica dei paragrafi già contenuti nella relazione tecnica oppure si può esportare nel formato RTF.

7.7 Apertura lavoro effettuato con una versione precedente

Aprendo un lavoro effettuato con una versione precedente, verrà richiesto di assegnare in modo più dettagliato la categoria dell'edificio.

Nel caso si voglia applicare il DIgs 311, cambiare la variabile Epoca limiti legge e il corrispondente modello di relazione tecnica, nel dialogo Epoca limiti/Modello relazione.

7.8 Descrizione delle nuove videate

7.8.1 Lettura di un lavoro effettuato con una versione precedente

L'aggiornamento consente l'apertura dei lavoro esistenti, non modifica le impostazioni a suo tempo inserite ma richiede di definire in modo più preciso la classificazione dell'edificio/impianto così come prevista dal DPR 412/93 (Art. 3) in quanto parametro essenziale nel caso si voglia applicare le nuove verifiche secondo D.Lgs 311/06.

Inform	ation 🔀
ţ)	Lavoro convertito. E necessario assegnare più dettagliatamente la categoria attualmente impostata in modo generico E.2
	<u> </u>

7.8.2 Epoca limiti legge/Modelli relazione tecnica

La scelta del modello determina l'applicazione del corrispondente punto dell' Allegato I.

Per determinare l'ambito di intervento, riferirsi allo schema di flusso riportato in appendice.

Notare il nuovo campo Epoca limiti di legge (dal quale dipende l'applicazione delle corrispondenti tabelle limiti sia per il fabbisogno di energia EPci che per le trasmittanze termiche U)

Impostazioni generali del progetto
MODELLO RELAZIONE TECNICA
Epoca limiti di legge DIgs 311 - 2 feb 2007 💌
DLa311+Legge 10 · Modello I1
C DLg311+Legge 10 · Modello I2
C DLg311+Legge 10 · Modello I3
C DLg311+Legge 10 · Modello I4
C DLg311+Legge 10 · Modello I5
C DLg311+Legge 10 · Modello I6
LEGGE 10/91 + DLg 192/05 + DLg 311/07 (Modello secondo Allegato E) Opere relative ad edifici di nuova costruzione o a ristrutturazione di edifici nei casi previsti dall'Art. 3.2, lettere a) e b) (Allegato I.1)
<nessuno></nessuno>
Per archetipo si intende un prototipo di Relazione tecnica definita negli elementi fondamentali: - singolo/gruppo di edifici-impianti - tipo di generatore (caldaia, pompa di calore) - modello di relazione (A,B,C) precompilato (frasi) - formattazione (font e impaginazione) I dati in esso contenuti sono tutti modificabili

130

7.8.3 Informazioni generali - classificazione edificio

Notare:

Il campo classificazione (categoria edificio) non è più editabile.

Inoltre è ora una variabile influente sull'applicazione dei limiti, sulla base delle indicazioni dell'Allegato I.

7.8.4 Nuova opzione input Superficie utile

Impostazioni generali del progetto
IMPOSTAZIONI PER IL CALCOLO DEL Cd E S/V globali E DELLA SUPERFICIE UTILE PER IL CALCOLO DELL'EPci
TEMPERATURA INTERNA DA UTILIZZARE NEL CALCOLO DEL DT
 valore fisso = 20°C
C temperatura interna impostata in ogni locale
SUPERFICIE DA UTILIZZARE NEL CALCOLO DI S/V
 valore calcolato (tutte le superfici disperdenti con DT<>0 escluso TF)
C valore di input 0
VOLUME DA UTILIZZARE COME VOLUME LORDO
 valore calcolato
O valore di input
SUPERFICIE UTILE DA UTILIZZARE NEL CALCOLO DELL'EPci
superficie utile calcolata Vnetto/hpiano
C valore di input 0
Altezza media di piano (hpiano) m 3.0

Notare:

- 1. L'opzione per il calcolo della superficie disperdente è impostata su tutte quelle con DT<>0 escluso TF
- 2. La presenza in questa videata di hpiano per il calcolo automatico della Su
- 3. Campo SUPERFICIE UTILE: campo di input utile nel caso si voglia indicare con maggior precisione la superficie netta calpestabile così come definita nell'allegato A, ai fini del calcolo dell'indice di prestazione energetica.

132

7.8.5 Verifiche dei vincoli di legge secondo D.Lgs 311/06

hp= Alte	zza netta media di	piano (modificabi	e nel dialogo li	npostazioni F	en)	3.0	1
Vn = vo	lume netto [m²]	224.0	Super. utile [n	n²] = Vn/hp	7	74.7	×
Rappor	to Superficie traspa	rente/Superficie	utile = 0.	195			^
FABBI EPci [SOGNO ANNUO DI (Wh/m²anno]	ENERGIA PRIMA	RIA PER CLIM	ATIZZAZION	E INVERI	NALE	
EPci li	mite [kWh/m²anno]		99.3				
E D			00.0				
	optorme alla legge						
EPCIC	onionile alla legge						
EPCIC	onronne ana regge						
Rendi	nento globale medio	o stag. di riferimer	nto (allegato I.1) (65+3 [.] log P	'n)% =		69.1
Rendi	nento globale medio	o stag. di riferimer	nto (allegato I.1) (65+3 [.] log P	'n)% =		69.1
Rendii	nento globale medic conformi alla legge	o stag. di riferimer	nto (allegato I.1) (65+3·log P	'n)% =		69.1
Rendii Strutture	nento globale medio conformi alla legge Tipo	o stag. di riferimer Esposizione	nto (allegato I.1 MF (kg/m²)) (65+3·log P U (W/m²K)	n)% = Verifica	Note	69.1
Rendii Strutture Co	nento globale medio conformi alla legge Tipo verticale opaca	Esposizione Esterno	MF (kg/m²) 366.2) (65+3·log P U (W/m²K) 0.387	'n)≵ = Verifica SI	Note (U<0.60) C.2	69.1
Rendii Grutture Co 00 P.E 204 S.E	nento globale medio conformi alla legge Tipo verticale opaca serramento	e stag. di riferimer Esposizione Esterno Esterno	MF (kg/m²) 366.2 20.0) (65+3·log P U (W/m²K) 0.387 1.940	n)% = Verifica SI SI	Note (U<0.60) C.2 (U<3.64) C.4a	69.1
Rendii Co Co 204 S.E 204 S.E	nento globale medic conformi alla legge Tipo verticale opaca serramento vetro	e stag. di riferimer Esposizione Esterno Esterno Esterno	MF (kg/m²) 366.2 20.0 20.0) (65+3·log P U (W/m²K) 0.387 1.940 1.900	n)2 = Verifica SI SI	Note (U<0.60) C.2 (U<3.64) C.4a (U<3.12) C.4b	69.1
Rendii Strutture Co 204 S.E 204 S.E 204 S.E 205 S.E	nento globale medio conformi alla legge Tipo verticale opaca serramento vetro serramento	e stag. di riferimer Esposizione Esterno Esterno Esterno Esterno	MF (kg/m²) 366.2 20.0 20.0 20.0 20.0) (65+3·log P U (W/m²K) 0.387 1.940 1.900 1.926	n) Z = Verifica SI SI SI SI	Note (U<0.60) C.2 (U<3.64) C.4a (U<3.12) C.4b (U<3.64) C.4a	69.1
Rendii Struttore Co 204 S.E 204 S.E 205 S.E 205 S.E	Tipo verticale opaca serramento vetro serramento vetro vetro vetro	Esposizione Esterno Esterno Esterno Esterno Esterno Esterno Esterno	MF (kg/m²) 366.2 20.0 20.0 20.0 20.0 20.0 20.0) (65+3·log P U (W/m²K) 0.387 1.940 1.900 1.926 1.900	n) Z = Verifica SI SI SI SI SI SI	Note (U<0.60) C.2 (U<3.64) C.4a (U<3.12) C.4b (U<3.64) C.4a (U<3.12) C.4b	69.1
Rendii 5trutture Co 204 S.E 205 S.E 205 S.E 205 S.E 303 P.I	Tipo verticale opaca serramento vetto vett	Esposizione Esterno Esterno Esterno Esterno Esterno Esterno Non riscaldati	MF (kg/m²) 366.2 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0) (65+3·log P U (W/m²K) 0.387 1.940 1.900 1.926 1.900 0.419	Verifica Verifica SI SI SI SI SI SI SI SI SI S	Note (U<0.60) C.2 (U<3.64) C.4a (U<3.12) C.4b (U<3.64) C.4a (U<3.12) C.4b (U<0.60) C.2	69.1
Rendii 5trutture Co 200 P.E 204 S.E 204 S.E 205 S.E 205 S.E 303 P.I 304 P.I	Tipo Verticale opaca Serramento Vetro Vetr	Esposizione Esterno Esterno Esterno Esterno Esterno Non riscaldati TF	MF (kg/m²) 366.2 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0) (65+3·log P U (W/m²K) 0.387 1.940 1.900 1.926 1.900 0.419 0.647	Verifica SI SI	Note (U<0.60) C.2 (U<3.64) C.4a (U<3.12) C.4b (U<3.64) C.4a (U<3.12) C.4b (U<0.60) C.2 (U<0.80) I.7	69.1
Rendia Strutture Co 100 P.E 204 S.E 204 S.E 205 S.E	Tipo Tipo Verticale opaca Serramento Vetro Serramento Vetro	Esposizione Esterno Esterno Esterno Esterno Esterno Non riscaldati TF T1	MF (kg/m²) 366.2 20.0) (65+3·log P U (W/m²K) 0.387 1.940 1.926 1.900 0.419 0.647 0.290	n)≵ = Verifica SI SI SI SI SI SI SI SI SI SI	Note (U<0.60) C.2 (U<3.64) C.4a (U<3.12) C.4b (U<3.64) C.4a (U<3.12) C.4b (U<0.60) C.2 (U<0.80) I.7 (U<0.56) C.3.2	69.1

Notare:

- 1. Il campo volume lordo
- 2. Il rapporto St/Su (usato per il modello I.6) tra la superficie trasparente e la superficie utile
- 3. La nota finale del 30% se modello I.1
- 4. Il rendimento globale diventa 75+3log Pn se il modello è diverso da I.1
- 5. La verifica delle pareti esterne delle zone non riscaldate
- 6. Per le porte opache si può selezionare quale limite confrontare

7.8.6 Opzione valore limite da confrontare per le porte opache

Dati generali di input Struttura	
COEFFICIENTI DI ASSORBIMENTO RADIAZIONE, ASSOCIATI ALLA STRUTTURA OPACA (UNI 10379:2005 par. 5.3)	
coefficiente di assorbimento della radiazione solare dovuto al colore: CHIARO = 0.3; MEDIO = 0.6; SCURO = 0.9 α	
coefficiente di riduzione che tiene conto del flusso radiativo emesso dalla superficie verso la volta celeste	
In assenza di dati calcolati con procedure dettagliate:	
Fer = 0.8 superfici orizzontali	
Fer = 0.9 superfici inclinate	
Fer = 1.0 superfici verticali	
Fer 0.3	
Opzione valore limite U da confrontare (Dlgs 192+311):	
Tabella C.2 (valori limite U delle strutture opache verticali)	
C Tabella C.4,a (valori linite U dei componenti finestrati) opzione consigliata in presenza di area velrata di dimensioni trascurabili	

7.8.7 Videata riepilogo rendimenti

Rendimenti

134

Rendimenti medi stagionali di progetto [%]

	Rendimento di emissione	96.0
	Rendimento di regolazione	98.0
	Rendimento di distribuzione	95.0
	Rendimento di produzione	76.1
Re	ndimento globale medio stagion	ale [%]
	Valore di progetto	68.0

Valore minimo imposto 69.1

Dlg 192 - 8-10-05 Dlg 311

* N.d.r.: Il valore di riferimento del rendimento globale medio stagionale dell'impianto termico (indicato nell'allegato C del DLg 192) va considerato come valore minimo limite solo se si applica il punto 3 dell'allegato I.

Nel caso si applichi il punto 1 dell'allegato I, il valore limite del rendimento globale medio stagionale è calcolato con la formula: (65 + 3 log Pn) %

7.8.8 Stampa

Il menù di stampa è stato modificato integrando le precedenti voci " Relazione Tecnica" e "Relazione personalizzata " in un'unica opzione denominata "Relazione tecnica" nella quale

è possibile gestire e selezionare le singole voci di stampa.

Il programma propone di default una sua composizione predefinita minima di voci per il deposito della Relazione tecnica in Comune.

Si è inoltre aggiunta la voce " Attestato di qualificazione energetica " che consente la stampa del Modello sostitutivo del certificato energetico come previsto dal D.M del 19 Febbraio 2007.

7.8.9 Editor di qualificazione energetica

- Si accede all'attestato Compilando la relazione e commutando l'editor sulla voce Attestato qualificazione (Menù Visualizza)
- I paragrafi con il lucchetto sono agganciati alle corrispondenti voci della relazione tecnica (doppio click per sganciare)
- Riferirsi alla guida riportata sotto l'albero dei paragrafi per le istruzioni di compilazione (tratte dalla guida del ministero finanze)
- Nel caso di lavori di gruppo effettuare la separazione dei files (Menù Opzioni) e procedere alla compilazione per ogni singolo edificioimpianto
- L'attestato può anche essere esportato (Menù File Esportazione.....) in formato RTF compatibile con programma tipo WORD

(File: CATEW6\LAVOR\DL192_Ulplanoterra) - STIMA - [Editor RTE C:\TEM6LAVOR\DL192_Ulplan	sterrs(AQE).RTF]
ie Hadifica Inseriaci Vaualizza 7	
🖺 👝 🔝 🔜 🙀 🕅 🛳 🦷 Microsongaviliari 🎔 Katara ingaviliari balakti editor panagrafia Microsoformatiszane 🎔 Editor ili pagina in statistikua	
TELADINE FEENON ATTERTATIO OURUPOCHIONE ENERGETTON	Indos Ministans
	A strander
	- PRONTESPEDO
5	- Localtà - Tra / Mol2o
	- Delagoria
ATTESTATO DI QUALIFICAZIONE ENERGETICA (ini fini ali singine pressi i affinitemi)	Propretatio/Costruitory DATI CENETIALI ALTI CENETIALI ALTI CENETIALI
Mindella served a selvera viportare la Allagata A dal D.M. 10 FAN-ala 2007 (nel contrato substato de catilization energica si senti dell'Art e Digar 15210) ;	Awro B cos Proprint chan Declinatione i
E seguran attacké di quilăfontino narquita épone la bienti fait e inicial se inicial de relativale prezident provins dall'Allegate I(DLgs e° 1920) întegrate cos à secontre DLgs e°511) "Zepatre della prezident della comprehe degli editer".	- Friday
tout ordepen rener on order order of the and the pentary of the out of out of the out of	11
Open alative at an environmentance	
Loolii: MILAND	
Via Paza Cera Viale	
Tipo di edificie : Appartenente (2.0X3.A)	
Calegoria: K.303	
AND A CONTRACT OF A CONTRACT O	

136

